Control \& Timing Relays

CS7 Industrial Control Relays G2
Technical Information \& Dimensions (Online) G13
CS8 Industrial Control Relays G17
Technical Information \& Dimensions (Online) G20
Next Gen RZ7 Electronic Timing Relays. G22.1
Technical Information \& Dimensions (Online) G22. 8
RZ7-FS Electronic Timing Relays G23
RZ7-FE Electronic Timing Relays G32
Technical Information \& Dimensions (Online) G38
Relpol General Purpose Plug-In Relays
R2N/R4N Plug-in Power Relays. G43
R15 Plug-in Power Relays G46
RUC Plug-in Power Relays G50
RY2 Plug-in Power Relays G52
PI84/PI85 Interface Relays G54
PIR6W Interface Terminal Block Relays G56
Technical Information \& Dimensions (Online) G58
GEFRAN Solid State Relays
Series GQ Panel Mount "Hockey Puck" Relays G82
Series GTS 1-Pole DIN-Rail Mount Relays G84
Series GTZ 3-Pole DIN-Rail Mount Relays G86
Accessories G87
Technical Information \& Dimensions (Online)
Cross Reference SAS/SAR to Gefran G88
Application Notes G89
Technical Informaiton G94
Wiring Diagrams \& Dimensions. G101

CS7
Industrial
Control
Relays

Reliable, general purpose relays for heavy duty applications

The base four pole CS7 relay can be expanded up to twelve poles with the addition of front and side mount auxiliaries

CS7 Industrial Control Relays share the same design as our modern CA7 contactor range. They are compact and designed for heavy duty industrial control applications where reliability and versatility are essential.

Introducing Three CS7 Models for any Control Application

The standard CS7 relay utilizes x stamped contact technology that reliably switches typical control circuits up to 10A (AC-15). For master relay circuits requiring higher amp capacity, the CS7M Master Relay is designed for control circuits up to 15A (AC-15).

For applications requiring low energy switching such as PLC's or other electronic circuits, the CS7-B relay with bifurcated contacts is designed for 20 million operations down to a signal level of $5 \mathrm{~V} @ 3 \mathrm{~mA}$.

The bifurcated H -bridge design divides each movable gold contact into two sections at the tip of the spanner which provides a higher degree of reliability for low signal applications.

Auxiliary components provide a range of options

CS7 auxiliary components convert the basic four pole relay into a:

- $5,6,7,8,9,10,11$ or 12 pole relay
- 4, 5, 6, 7 or 8 pole latched relay
- 4, 5, 6, 7 or 8 pole relay with two pneumatic time delay contacts
- Mechanically latched $4,5,6,7$ or 8 pole relay
- Also available are top mounted bifurcated auxiliary contacts which operate down to $5 \mathrm{~V} @ 3 \mathrm{~mA}$.

Since the CS7 uses the same auxiliary components as our CA7 contactors, inventory is reduced and selection of components is simplified with this modular system.

Mechanically linked contacts for safety

CS7 control relays are perfect for failsafe control circuits. An interlock contact design, which maintains minimum 0.3 mm clearance, prevents the NC contact from reclosing if the NO contact is welded when in operation. This feature not only includes the base contact poles, but extends to the front and/or side mounted auxiliary contacts. This is a requirement in safety circuits and is backed by SUVA-PRO certification.

Maximum convenience and safety

CS7 relays are designed for fast and trouble free installation and maintenance. All components are modular and snap-on without the use of tools. The relays are DIN-rail mountable so they can be installed, moved or replaced quickly. All terminals are "captive" and are shipped in the open position, saving you an operation. The entire line is UL Listed, CSA Certified and CE marked and offers finger and back of hand protection to the strictest international standards.

Effortless installation

CS7 relays are DIN-rail mountable for instant installation and modification. Fittings are also included for base mounting. All terminals are clearly marked and ready for installation with either manual or power screwdrivers. A complete identification system is also available using self-adhesive labels, paper tags or plastic clip-on tags.

Series CS7 Standard Control Relays - 4 Pole 14

CS7 Relay	Contact Arrangement and Numbering	Contacts (1)		AC Operation	Electronic DC ©
		NO	NC	Catalog Number	Catalog Number
		2	2	CS7-22E-*	CS7E-22E-*
		3	1	CS7-31E-*	CS7E-31E-*
		4	0	CS7-40E-*	CS7E-40E-*
		0	4	CS7-04E-*	CS7E-04E-*

Contact Ratings (Per UL508/NEMA A600 \& P600)

Standard	Circuit Voltage	Make (Amps/VA)	Break (Amps/VA)	Continuous Amps
A600	120 AC	$60 \mathrm{~A} / 7200 \mathrm{VA}$	$6 \mathrm{~A} / 720 \mathrm{VA}$	
	240 AC	$30 \mathrm{~A} / 7200 \mathrm{VA}$	$3 \mathrm{~A} / 720 \mathrm{VA}$	10
	480AC	$15 \mathrm{~A} / 7200 \mathrm{VA}$	$1.5 \mathrm{~A} / 720 \mathrm{VA}$	
	1200AC	$12 \mathrm{~A} / 7200 \mathrm{VA}$	$1.2 \mathrm{~A} / 720 \mathrm{VA}$	
	250 DC © 2	$1.1 \mathrm{~A} / 138 \mathrm{VA}$	$1.1 \mathrm{~A} / 138 \mathrm{VA}$	
	$301-600 \mathrm{DC}$ (2	$0.55 \mathrm{~A} / 138 \mathrm{VA}$	$0.55 \mathrm{~A} / 138 \mathrm{VA}$	5

Other UL Ratings

Maximum Voltage 600 volts AC or DC
General Purpose Amps

CS7	25 amps
Auxiliaries (@ $\left.40^{\circ} \mathrm{C}\right)$	10 amps
Auxiliaries (@60	$6 \mathrm{mps})$

AC Coil Codes ©

AC Coil Code	Voltage Range	
	50 Hz	60 Hz
24 Z	24 V	24 V
120	110 V	120 V
220 W	$200-220 \mathrm{~V}$	$208-240 \mathrm{~V}$
277	240 V	277 V
415	$400-415 \mathrm{~V}$	\sim
480	440 V	480 V
600	550 V	600 V

Ordering Instructions

Specify Catalog Number	
Replace $(\boldsymbol{*})$ with Coil Code	See Coil Codes on this page

(1) Side mounted and/or top auxiliaries may be field installed to increase the number of available poles, limitations apply. Refer to page G14 for ordering and restriction details. Please note that side mount auxiliary terminal markings may conflict with base relay and/or top mount auxiliary terminal markings.
(2) DC rating for CS7 base control relay.
(3) Other voltages available, see page G12.
(4) Positively-Guided/Mechanically-Linked Contacts per IEC 947-5-1 Annex L on 4 main poles.
© CS7E electronic coils are not interchangeable with non-electronic DC or AC coils.
© Not applicable with Electronic Timer accessories (CRZ_7).

Series CS7-B Control Relays - 4 Pole, Bifurcated Contacts for Lower Level Signals 14

CS7-B Relay	Contact Arrangement and Numbering	Contacts 1		AC Operation	Electronic DC ©
		NO	NC	Catalog Number	Catalog Number
		2	2	CS7-B22E-*	CS7E-B22E-*
	$\left.\left.\left.\left.\left.\right\|_{\text {A2 }} ^{A 1}\right\|_{14} ^{13}\right\|_{22} ^{21}\right\|_{34} ^{33}\right\|_{44} ^{43}$	3	1	CS7-B31E-*	CS7E-B31E-*
	$\left.\left.\left.\left.\underset{\left.\right\|_{\mathrm{A} 2}}{\boldsymbol{A}_{1}^{\mathrm{A} 1}}\right\|_{14} ^{13}\right\|_{24} ^{23}\right\|_{34} ^{33}\right\|_{44} ^{43}$	4	0	CS7-B40E-*	CS7E-B40E-*
		0	4	CS7-B04E-*	CS7E-B04E-*

Contact Ratings (Per UL508/NEMA A600 \& Q600)

Standard	Circuit Voltage	Make (Amps/VA)	Break (Amps/VA)	Continuous Amps
	120 AC	$60 \mathrm{~A} / 7200 \mathrm{VA}$	$6 \mathrm{~A} / 720 \mathrm{VA}$	
A600	240 AC	$30 \mathrm{~A} / 7200 \mathrm{VA}$	$3 \mathrm{~A} / 720 \mathrm{VA}$	10
	480AC	$15 \mathrm{~A} / 7200 \mathrm{VA}$	$1.5 \mathrm{~A} / 720 \mathrm{VA}$	
	600 AC	$12 \mathrm{~A} / 7200 \mathrm{VA}$	$1.2 \mathrm{~A} / 720 \mathrm{VA}$	
	125 DC ©	$0.55 \mathrm{~A} / 69 \mathrm{VA}$	$0.55 \mathrm{~A} / 69 \mathrm{VA}$	
$\mathbf{a 6 0 0}$	250 DC ©	$0.27 \mathrm{~A} / 69 \mathrm{VA}$	$0.27 \mathrm{~A} / 69 \mathrm{VA}$	2.5
	$301-600 \mathrm{DC}$ ($)$	$0.1 \mathrm{~A} / 69 \mathrm{VA}$	$0.1 \mathrm{~A} / 69 \mathrm{VA}$	

CS7-B Bifurcated Control Relay

- Gold plated bifurcated contacts for low level switching application, min $5 \mathrm{~V}, 3 \mathrm{~mA}$
- Maximum voltage 600V AC or DC
- General purpose amps - 10 amps
- Positively guided/mechanically-linked main contacts

Principle moving contact designs:

AC Coil Codes 3

ACoil Code	Voltage Range	
	50 Hz	60 Hz
$\mathbf{1 2 0}$	110 V	120 V

DC Coil Codes 5

DC Coil Codes	Voltage
$\mathbf{1 2 E}$	12 V
24 E	$\mathbf{2 4 V}$
$\mathbf{3 6 E} \mathbf{6}$	$36-48 \mathrm{~V}$
48 E 6	$48-72 \mathrm{~V}$
110 E 6	$110-125 \mathrm{~V}$
220 E 6	$220-250 \mathrm{~V}$

CS7-B
Bifurcated Contacts

Standard Contacts

Ordering Instructions

Specify Catalog Number	
Replace (*) with Coil Code	See Coil Codes on this page

- Side mounted and/or top auxiliaries may be field installed to increase the number of available poles, limitations apply. Refer to page G14 for ordering and restriction details. Please note that side mount auxiliary terminal markings may conflict with base relay and/or top mount auxiliary terminal markings.
(2 DC rating for CS7-B base control relay.
(3) Other AC voltages available, see page G12.
(4) Positively-Guided/Mechanically-Linked Contacts per IEC 947-5-1 Annex L on 4 main poles.
© CS7E electronic coils are not interchangeable with non-electronic DC or AC coils.
© Not applicable with Electronic Timer accessories (CRZ_7).

Series CS7 Master Control Relays - 4 Pole 04

CS7-M Relay	Contact Arrangement and Numbering	Contacts 1		AC Operation	Electronic DC 5
		NO	NC	Catalog Number	Catalog Number
		2	2	CS7-M22E-*	CS7E-M22E-*
		3	1	CS7-M31E-*	CS7E-M31E-*
	$\text { A }\left.\left.\left.\left._{\text {A2 }}^{A 1}\right\|_{14} ^{13}\right\|_{24} ^{23}\right\|_{34} ^{33}\right\|_{44} ^{43}$	4	0	CS7-M40E-*	CS7E-M40E-*
CS7-M22E		0	4	CS7-M04E-*	CS7E-M04E-*

Contact Ratings (Per UL508/NEMA A600 \& P600)

Standard	Circuit Voltage	Make (Amps/VA)	Break (Amps/VA)	Continuous Amps
A600	120 AC	$60 \mathrm{~A} / 7200 \mathrm{VA}$	$6 \mathrm{~A} / 720 \mathrm{VA}$	
	240 AC	$30 \mathrm{~A} / 7200 \mathrm{VA}$	$3 \mathrm{~A} / 720 \mathrm{VA}$	20
	480AC	$15 \mathrm{~A} / 7200 \mathrm{VA}$	$1.5 \mathrm{~A} / 720 \mathrm{VA}$	
	600AC	$12 \mathrm{~A} / 7200 \mathrm{VA}$	$1.2 \mathrm{~A} / 720 \mathrm{VA}$	
	125DC ©	$1.1 \mathrm{~A} / 138 \mathrm{VA}$	$1.1 \mathrm{~A} / 138 \mathrm{VA}$	
	250 DC ©	$0.55 \mathrm{~A} / 138 \mathrm{VA}$	$0.55 \mathrm{~A} / 138 \mathrm{VA}$	5
	$301-600 \mathrm{DC}$ (2	$0.2 \mathrm{~A} / 138 \mathrm{VA}$	$0.2 \mathrm{~A} / 138 \mathrm{VA}$	

CS7-M Master Control Relays

- Excellent replacement for heavy duty NEMA master relay users.
- Maximum voltage 600V AC or DC
- General purpose rating 30 amps (2X A600 for CS7-M Base Relay)

Principle moving contact designs:

AC Coil Codes 3

AC	Voltage Range	
	50 Hz	60 Hz
$\mathbf{1 2 0}$	110 V	120 V

DC Coil Codes 5

DC Coil Codes	Voltage
12 E	12 V
24 E	24 V
$36 \mathrm{E} \boldsymbol{\theta}$	$36-48 \mathrm{~V}$
$48 \mathrm{E} \boldsymbol{\theta}$	$48-72 \mathrm{~V}$
$110 \mathrm{E} \boldsymbol{\theta}$	$110-125 \mathrm{~V}$
$220 \mathrm{e} \boldsymbol{\theta}$	$220-250 \mathrm{~V}$

- Side mounted and/or top auxiliaries may be field installed to increase the number of available poles, limitations apply. Refer to page G14 for ordering and restriction details. Please note that side mount auxiliary terminal markings may conflict with base relay and/ or top mount auxiliary terminal markings.
(2 DC rating for CS7-M base control relay.
(3) Other AC voltages available, see page G12.
(4) Positively-Guided/Mechanically-Linked Contacts per IEC 947-5-1 Annex L on 4 main poles.
© CS7E electronic coils are not interchangeable with non-electronic DC or AC coils.
© Not applicable with Electronic Timer accessories (CRZ_7).

CS7 Complete Assemblies - 6 Pole, AC Control 1 (6)

CS7 Relay	Contact Arrangement and Numbering	Contacts 1		AC Operation
		NO	NC	Catalog Number
		3	3	CS7-33Y-*
	$\left.\left.\left.\left.\left.\left.a_{A 2}\right\|_{14} ^{A 1}\right\|_{24} ^{13}\right\|_{34} ^{13}\right\|_{44} ^{23}\right\|_{52} ^{33}\right\|_{62} ^{43}$	4	2	CS7-42E-*
	$\left.\left.\left.\left.\left.\left.\left.a_{A 2}^{A 1}\right\|_{14} ^{\left.\right\|^{13}}\right\|_{22} ^{21}\right\|_{34} ^{23}\right\|_{44} ^{33}\right\|_{54} ^{43}\right\|_{62} ^{53}\right\|_{61} ^{61}$	4	2	CS7-42Y-*
	$\left.\left.\left.\left.\left.\left.\left.a_{A 2}^{A}\right\|_{14} ^{A 1}\right\|_{24} ^{13}\right\|_{34} ^{23}\right\|_{44} ^{33}\right\|_{54} ^{43}\right\|_{62} ^{53}\right\|_{61} ^{61}$	5	1	CS7-51E-*
	$\left.\left.\left.\left.\left.\left.T_{A 2}^{A 1}\right\|_{14} ^{A}\right\|_{24} ^{13}\right\|_{34} ^{23}\right\|_{44} ^{33}\right\|_{54} ^{43}\right\|_{64} ^{53}$	6	0	CS7-60E-*

AC Coil Codes ©

AC Coil Code	Voltage Range	
	50 Hz	60 Hz
24 Z	24 V	24 V
120	110 V	120 V
220 W	$\mathbf{2 0 0 - 2 2 0 V}$	$208-240 \mathrm{~V}$
277	240 V	277 V
415	$400-415 \mathrm{~V}$	\sim
480	440 V	480 V
600	550 V	600 V

Contact Ratings (Per UL508/NEMA A600, P600 \& Q600)

Standard	Circuit Voltage	Make (Amps/VA)	Break (Amps/VA)	Continuous Amps
A600	$\begin{aligned} & 120 \mathrm{AC} \\ & 240 \mathrm{AC} \\ & 480 \mathrm{AC} \\ & 600 \mathrm{AC} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 60A/7200VA } \\ & \text { 30A/7200VA } \\ & \text { 15A/7200VA } \\ & \text { 12A/7200VA } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { 6A } / 720 \mathrm{VA} \\ \text { 3A/720VA } \\ 1.5 \mathrm{~A} / 720 \mathrm{VA} \\ 1.2 \mathrm{~A} / 720 \mathrm{VA} \\ \hline \end{gathered}$	10
P600	$\begin{gathered} \text { 125DC © } \\ 250 \mathrm{DC} \text { © } \\ 301-600 \mathrm{DC} \text { (} \end{gathered}$	1.1A/138VA $0.55 \mathrm{~A} / 138 \mathrm{VA}$ 0.2A/138VA	1.1A/138VA $0.55 \mathrm{~A} / 138 \mathrm{VA}$ 0.2A/138VA	5
Q600	$\begin{gathered} 125 \mathrm{DC} \text { © } \\ 250 \mathrm{DC} \text { © } \\ 301-600 \mathrm{DC} \text { 8 } \end{gathered}$	$\begin{aligned} & 0.55 \mathrm{~A} / 69 \mathrm{VA} \\ & 0.27 \mathrm{~A} / 69 \mathrm{VA} \\ & 0.1 \mathrm{~A} / 69 \mathrm{VA} \end{aligned}$	$\begin{aligned} & 0.55 \mathrm{~A} / 69 \mathrm{VA} \\ & 0.27 \mathrm{~A} / 69 \mathrm{VA} \\ & 0.1 \mathrm{~A} / 69 \mathrm{VA} \end{aligned}$	2.5

Other UL Ratings
Maximum Voltage 600 volts AC or DC

General Purpose Amps
CS7 25 A
Aux. (@40 ${ }^{\circ}$) 10 A
Aux. (@60 ${ }^{\circ}$) 6A

Ordering Instructions

Specify Catalog Number	
Replace (*) with Coil Code	See Coil Codes on this page

(1) Side mounted and/or top auxiliaries may be field installed to increase the number of available poles, limitations apply. Refer to page G14 for ordering and restriction details. Please note that side mount auxiliary terminal markings may conflict with base relay and/or top mount auxiliary terminal markings.
(2) DC rating for CS7 base control relay.
(3) DC rating for CS7 auxiliary blocks.
(4) Other voltages available, see page G12.
© Positively-Guided/Mechanically-Linked Contacts per IEC 947-5-1 Annex L on 4 main poles and auxiliaries.

CS7 Complete Assemblies - 8 Pole, AC Control 1 ©

CS7 Relay	Contact Arrangement and Numbering	Contacts 1		AC Operation
		NO	NC	Catalog Number
		4	4	CS7-44E-*
		4	4	CS7-44Y-*
		5	3	CS7-53E-*
		5	3	CS7-53Y-*
		6	2	CS7-62E-*
		7	1	CS7-71E-*
		8	0	CS7-80E-*

AC Coil Codes 4

AC Coil Code	Voltage Range	
	50 Hz	60 Hz
24 Z	24 V	24 V
120	110 V	120 V
220 W	$200-220 \mathrm{~V}$	$208-240 \mathrm{~V}$
277	240 V	277 V
415	$400-415 \mathrm{~V}$	\sim
480	440 V	480 V
600	550 V	600 V

Contact Ratings (Per UL508/NEMA A600, P600 \& Q600)

Standard	Circuit Voltage	Make (Amps/VA)	Break (Amps/VA)	Continuous Amps
A600	$\begin{aligned} & \hline 120 \mathrm{AC} \\ & 240 \mathrm{AC} \\ & 480 \mathrm{AC} \\ & 600 \mathrm{AC} \\ & \hline \end{aligned}$	60A/7200VA 30A/7200VA 15A/7200VA 12A/7200VA	$\begin{aligned} & \hline 6 \mathrm{~A} / 720 \mathrm{VA} \\ & 3 \mathrm{~A} / 720 \mathrm{VA} \\ & 1.5 \mathrm{~A} / 720 \mathrm{VA} \\ & 1.2 \mathrm{~A} / 720 \mathrm{VA} \\ & \hline \end{aligned}$	10
P600	$\begin{gathered} \text { 125DC © } \\ 250 \mathrm{DC} \text { © } \\ 301-600 \mathrm{DC} \text { © } \end{gathered}$	1.1A/138VA 0.55A/138VA 0.2A/138VA	1.1A/138VA 0.55A/138VA 0.2A/138VA	5
Q600	$\begin{gathered} 125 \mathrm{DC} \text { 8 } \\ 250 \mathrm{DC} \text { ® } \\ 301-600 \mathrm{DC} \text { 8 } \end{gathered}$	$\begin{aligned} & \hline 0.55 \mathrm{~A} / 69 \mathrm{VA} \\ & 0.27 \mathrm{~A} / 69 \mathrm{VA} \\ & 0.1 \mathrm{~A} / 69 \mathrm{VA} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.55 \mathrm{~A} / 69 \mathrm{VA} \\ & 0.27 \mathrm{~A} / 69 \mathrm{VA} \\ & 0.1 \mathrm{~A} / 69 \mathrm{VA} \\ & \hline \end{aligned}$	2.5

Other UL Ratings
Maximum Voltage 600 volts AC or DC

General Purpose Amps CS7 25 A Aux. (@40 ${ }^{\circ} \mathrm{C}$) 10 A Aux. (@60 ${ }^{\circ}$) 6A

Ordering Instructions

Specify Catalog Number	
Replace $(\boldsymbol{*})$ with Coil Code	See Coil Codes on this page

(1) Side mounted and/or top auxiliaries may be field installed to increase the number of available poles, limitations apply. Refer to page G14 for ordering and restriction details. Please note that side mount auxiliary terminal markings may conflict with base relay and/or top mount auxiliary terminal markings.
(2) DC rating for CS7 base control relay.
(3) DC rating for CS7 auxiliary blocks.
(4) Other voltages available, see page G12.
© Positively-Guided/Mechanically-Linked Contacts per IEC 947-5-1 Annex L on 4 main poles and auxiliaries.

Side Mount Auxiliary Contact Blocks (1 \& 2 Pole) © (2)

Contact Block	Description	N0	NC	Contact Arrangement	For use with...	Standard Contacts Catalog Number
	Auxiliary Contact Blocks for Side Mounting (1) ${ }^{2}$ - 1 and 2-pole - Two way numbering for right or left mounting on the contactor - Snap-on design - mounts without tools - Electronic compatible contacts 17 V , 10 mA - Late break / early make (L) available - Mirror contact performance to control relay poles	0	1	$\psi^{\frac{21}{28}}$	CS7 all	CA7-PA-01
		1	0	$\left.\right\|_{\left\lvert\, \frac{14}{\frac{14}{8 b}}\right.} ^{\frac{14}{8 \dagger}}$	CS7 all	CA7-PA-10
		0	2	$4_{\frac{11}{2 \phi}}^{\frac{12}{1 t}} 4_{\frac{22}{28}}^{\frac{21}{28}}$	CS7 all	CA7-PA-02
		1	1		CS7 all	CA7-PA-11
		2	0		CS7 all	CA7-PA-20
		1 L	1L		CS7 all	CA7-PA-L11

Top Mount Auxiliary Contact Blocks (2 \& 4 Pole) (2)

Contact Block	Description	NO	NC	Contact Arrangement	For use with...	Standard Contacts Catalog Number	Bifurcated Contacts Catalog Number
2-pole (typical)	Auxiliary Contact Blocks for Top Mounting (2) - 2 and 4 pole - Snap-on design - mounts without tools - Electronic compatible standard contacts down to $17 \mathrm{~V}, 5 \mathrm{~mA}$, bifurcated version $5 \mathrm{~V}, 3 \mathrm{~mA}$ - Mechanically linked between N.O. and N.C. poles and to the control relay poles (excluding L types). - Several terminal numbering choices even for models with equal function - Late break / early make (L) available	0	2	$\left.\left.\right\|_{52} ^{51}\right\|_{62} ^{61}$	CS7 all	CS7-PV-02	CS7-PVB-02
		1	1		CS7 all	CS7-PV-11	CS7-PVB-11
		2	0	$\left.\left.\right\|_{54} ^{53}\right\|_{64} ^{63}$	CS7 all	CS7-PV-20	CS7-PVB-20
		2	2	$\left.\left.\left.\left.\right\|_{54} ^{53}\right\|_{62} ^{61}\right\|_{72} ^{61}\right\|_{84} ^{71}$	CS7 all	CS7-PV-22	CS7-PVB-22
		3	1	$\left.\left.\left.\right\|_{54} ^{\left.\right\|^{53}\| \|_{62}^{61} \mid}\right\|_{74} ^{63}\right\|_{84} ^{83}$	CS7 all	CS7-PV-31	CS7-PVB-31
		1	3	$)\left.\left.\left._{54}^{53}\right\|_{62} ^{61}\right\|_{72} ^{71}\right\|_{82} ^{81}$	CS7 all	CS7-PV-13	CS7-PVB-13
		4	0	$\left.\left.\left.\left.\right\|_{54} ^{53}\right\|_{64} ^{53}\right\|_{74} ^{63}\right\|_{84} ^{83}$	CS7 all	CS7-PV-40	CS7-PVB-40
		0	4	$\left.t_{52}^{51} \dot{6}_{62}^{61} \psi_{72}^{71}\right\|_{82} ^{81}$	CS7 all	CS7-PV-04	CS7-PVB-04
		$1+1 \mathrm{~L}$	$1+1 \mathrm{~L}$	$\left.\left.\left.\left.\right\|_{54} ^{53}\right\|_{62} ^{61}\right\|_{76} ^{75}\right\|_{88} ^{87}$	CS7 all	CS7-PV-L22	Not Available

- Side mounted auxiliaries may be field installed to increase the number of available poles. Please note that terminal markings may conflict with base relay and/or top mount auxiliary terminal markings.
(3) See page G14 for maximum number of auxiliaries to be mounted.

Control Modules

Module	Description	For use with...	Connection Diagrams	Catalog Number
	Mechanical Latch Following relay latching, the relay coil is immediately de-energized by the NC auxiliary contact (65-66). - Electrical or manual release - 1 NO + 1 NC auxiliary switch - Suitable for all CS7 relays	CS7 all		CV7-11-* Replace * with coil code below (See Application Note)

CV7 Mechanical Latch Coil Codes 123 (3)

Coil Code	Application Range			Latch \& Contactor Coil Rating
	50 Hz	60 Hz	VDC	
242	24 VAC	24 VAC	12 VDC	$24 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
482	48 VAC	48 VAC	24 VDC	$48 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
110	100 VAC	110 VAC	48 or 60VDC	110V50/110V60
120	110 VAC	120 VAC	~	110V50/120V60
220W	\sim	$\begin{gathered} \text { 208... } 240 \\ \text { VAC } \end{gathered}$	\sim	208...240V60
$230 Z$	230 VAC	230 VAC	110 VDC	$230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
2402	240 VAC	240 VAC	125 VDC	$240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
277	240 VAC	277 VAC	\sim	240V50/277V60
380	$\begin{gathered} 380 \ldots 400 \\ \text { VAC } \end{gathered}$	440 VAC	\sim	380...400V50/440V60
4002	400 VAC	400 VAC	220 VDC	$400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
415	$\begin{gathered} 400 \ldots 415 \\ \text { VAC } \\ \hline \end{gathered}$	\sim	\sim	$400 \ldots . .415 \mathrm{~V} 50 \mathrm{~Hz}$
480	440 VAC	480 VAC	\sim	440V50/480V60
600	550 VAC	600 VAC	\sim	550V50/600V60

APPLICATION NOTE:

The CV7 Mechanical Latch for CS7 Control Relay may be used for both AC and DC applications; however when using DC control circuit the user must apply the following rules for coil selection of the control relay and latch combination:

- The CS7E control relay uses an electronic DC coil and the CV7 latch coil code should be chosen from the table on the left. (i.e.: 24V DC control circuit select CS7E with code 24E and CV7 latch uses a $48 Z$ AC coil code).

[^0]Control Modules

	Module	Description	For use with...	Connection Diagrams	Function	Catalog Number
		Pneumatic Timing Module The contacts in the Pneumatic Timing Element switch after the delay time. The contacts on the relay continue to operate without delay. - Continuous adjustment range	CS7 all 1	$\frac{\left.\left.\right\|_{68} ^{167}\right\|_{56} ^{55}}{\left(\left.t_{66}^{65}\right\|_{58} ^{57}\right.}$	ON-Delay .3...30s 1.8...180s OFF-Delay 0.3...30s 1.8...180s	$\begin{array}{\|l\|} \hline \text { CZE7-30 } \\ \text { CZE7-180 } \end{array}$
		Electronic Timing Module - © ON-Delay The relay is energized at the end of the delay time.	CS7 with 110...240V, 50/60Hz or 110...250V DC		$\begin{aligned} & 110 \ldots 240 \mathrm{~V} 50 / 60 \mathrm{~Hz} \\ & 110 \ldots 250 \mathrm{~V} \text { DC } \\ & 0.1 \ldots 3 \mathrm{~s} \\ & 1 \ldots . .30 \mathrm{~s} \\ & 10 \ldots 180 \mathrm{~s} \end{aligned}$	CRZET-3-110/240 CRZE7-30-110/240 CRZE7-180-110/240
			$\begin{aligned} & \text { CS7 with } \\ & 24 . . .48 \mathrm{~V} \text { DC } \end{aligned}$		$\begin{aligned} & 24 \ldots 48 \mathrm{~V} D C \\ & 0.1 \ldots .3 \mathrm{~s} \\ & 1 \ldots .30 \mathrm{~s} \\ & 10 \ldots 180 \mathrm{~s} \\ & \hline \end{aligned}$	CRZE7-3-24/48VDC CRZE7-30-24/48VDC CRZE7-180-24/48VDC
		Electronic Timing Module - © OFF-Delay After interruption of the control signal, the relay is de-energized at the end of the delay time.	$\begin{aligned} & \text { CS7 with 24V, } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 110 \ldots 240 \mathrm{~V} 50 / 60 \mathrm{~Hz} \\ & 0.3 \ldots 3 \mathrm{~s} \\ & 1 \ldots . .30 \mathrm{~s} \\ & 10 \ldots 180 \mathrm{~s} \end{aligned}$	CRZA7-3-110/240 CRZA7-30-110/240 CRZA7-180-110/240
			$\begin{aligned} & \text { CS7 with } \\ & 110 . . .240 \mathrm{~V}, \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$		24V AC 50/60Hz 0.3...3s 1...30s 10...180s	CRZA7-3-24VAC CRZA7-30-24VAC CRZA7-180-24VAC

Control Modules (continued)

Module	Description	For use with...	Connection Diagrams	Function		Catalog Number
	Electronic Interface Interface between the DC control signal from a PLC and the AC operating mechanism of the relay. - Requires no additional surge suppression for the coils - Switching capacity 200VA - Suitable for all CS7 relays	CS7 all (with AC control)		Input	Output	
				24V DC 18...30V DC 48V DC	$\begin{gathered} 110 \ldots \\ 240 \mathrm{~V} \text { AC } \end{gathered}$	CRI7E-24 CRI7E-12 CRITE-48 Indicates special order
	Surge Suppressors - Limits coil switching transients. - Plug-in, coil mounted - Suitable for all CS7 contactors	CS7 all (with AC control)	$\left[\begin{array}{c} -\Gamma_{N}^{-1}-- \\ \square-1 \end{array}\right]^{-}$	RC Module AC Control (5 24...48V 110... 280 V 380...480V	60Hz)	CRC7-48 CRC7-280 CRC7-480
		CS7C (with conventional DC control)		Diode Modul DC Control 12-250VDC		CRD7-250 0
		CS7 all (with AC control) CS7C (with conventional DC control)		Varistor Mod AC/DC Contro 12...55VAC/ 12...77VDC 56...136VAC 78...180VDC 137...277VAC 181...350VD 278...575VA		CRV7-55 © CRV7-136 CRV7-277 CRV7-575

Assembly Components

Component	Description	For Use With...	Pkg. Qty.	Catalog Number
	Spade Connectors - Dual stab for coil terminals (0.250 inch $)$	All CS7	20	CA7-SC2

Other Common Accessories

(1) Electronic DC Control Relays (CS7E) include internal surge protection and do not require additional external surge protection.

Renewal Coils - AC ©

AC Control Voltages			AC Coil Codes	Electronic AC Coils
	Cat. No.			
50 Hz	60 Hz	$50 / 60 \mathrm{~Hz}$		CA7-
				TA855
\sim	\sim	24 V	$24 Z$	120
110 V	120 V	\sim	TA473	
115 V	127 V	\sim	127	TA424
\sim	$208 \mathrm{~V} \ldots 240 \mathrm{~V}$	\sim	220 W	TA296
\sim	\sim	230 V	230 Z	TA851
240 V	277 V	\sim	277	TA480
$400 \mathrm{~V} . . .415 \mathrm{~V}$	\sim	\sim	415	TA457
440 V	480 V	\sim	480	TA475
550 V	600 V	\sim	600	TA476

CS7 AC coil (typical)

Renewal Coils - Electronic DC (2)

DC Control Voltages	DC Coil Codes	Electronic DC Coils
		Cat. No.
		CA7-
12 V	12 E	TC708E
24 V	24 E	TC714E
$36-48 \mathrm{~V}$	36 E	TC719E
$48-72 \mathrm{~V}$	48 E	TC724E
$110-125 \mathrm{~V}$	110 E	TC733E
$220-250 \mathrm{~V}$	220 E	TC747E

12V \& 24V Electronic DC coil (2)

36V...220V Electronic DC coil with Back Pack (2)

Technical Information

Mechanically Linked Contacts (3)

Location of welded NO contacts	State of NC contacts if NO contact welds			
	Main	Front mount auxiliary	Left side auxiliary	Right side auxiliary
Main	Open	Open ©	Open ©	Open ©
Front auxiliary	Open	Open ©	Open ©	Open ©
Left side aux.	Open	Open ©	Open ©	Open ©
Right side aux.	Open	Open ©	Open ©	Open ©

DC Switching Ratings for CS7 Main Poles in Series

(Resistive Load at $60^{\circ} \mathrm{C}$)			
	$\mathbf{1}$ pole	$\mathbf{2}$ poles	$\mathbf{3}$ poles
$\mathbf{2 4} / \mathbf{4 8} \mathbf{~ V}$	$25 / 20 \mathrm{~A}$	25 A	25 A
$\mathbf{1 2 5} \mathbf{~ V}$	6 A	25 A	25 A
$\mathbf{2 2 0} \mathbf{~ V}$	1.5 A	8 A	25 A
$\mathbf{4 4 0} \mathbf{~ V}$	0.4 A	1 A	3 A

Standards Compliance

UL 508
CSA C22.2 NO. 14
EN/IEC 60947-1, -5-1
Meets the material restrictions for European Directive 2002/95/EC - EU-RoHS.

Certifications

cULus Listed (File No. E33916,
Guide NKCR/NKCR7)
CE Marked
cULus Listed (File No. E33916,
Guide NKCR/NKCR7)
CE Marked
cULus Listed (File No. E33916,
Guide NKCR/NKCR7)
CE Marked
(1f the accessory is a Pneumatic Timer or latch, there is no positive guidance; the accessory contacts are independent.
(2) Defined in IEC 947-5-1 annex L. Mechanically linked is a relationship between contacts of opposite types (i.e., NO and NC).
(3) Side mounted auxiliary contacts provide "mirror contact" performance with main poles only.

Technical Information

Rated Insulation Voltage U_{i} IEC UL; CSA	690 V 600 V	Corrosion Resistance	humid-alternating climate, cyclic, per IEC 68-2-30 and DIN 50 016, 56 cycles
Rated Impulse Strength Uimp	6 kV	Altitude	2000 m above main sea level, per IEC 947-4
High Test Voltage 1 minute (per IEC 947-4)	2500 V	Type of Protection IP 2 X (IEC 60529 and DIN 40050)	in connected state
$\begin{aligned} & \text { Rated Voltage } U_{\mathrm{e}} \\ & \text { AC } \\ & \text { DC } \\ & \hline \end{aligned}$	$\begin{gathered} 115,230,400,500,690 \mathrm{~V} \\ 24,48,110,220,440 \mathrm{~V} \end{gathered}$	Finger Protection	safe from touch by fingers and back of hand per VDE 0106, Part 100
Rated Frequency	$50 / 60 \mathrm{~Hz}, \mathrm{DC}$	Shock Protection	
Ambient Temperature		IEC 68-2: Half Sinusoidal shock 11ms	30 G (in 3 directions)
Storage	$-55 \ldots+80^{\circ} \mathrm{C}\left(-67 \ldots 176^{\circ} \mathrm{F}\right)$	Vibration Resistance	
Operation at nominal current Conditioned 15% current reduction	$-25 \ldots+60^{\circ} \mathrm{C}\left(-13 \ldots 140^{\circ} \mathrm{F}\right)$	IEC 68-2: static $>2 \mathrm{G}$ in normal position	no malfunction < 5G

Coil Data - AC Control Circuit

Operating Voltage Range	Pickup Dropout	$\begin{aligned} & {\left[\begin{array}{ll} x & U_{s} \end{array}\right]} \\ & {\left[\begin{array}{lll} x & U_{s} \end{array}\right]} \end{aligned}$	$\begin{gathered} 0.85 \ldots 1.1 \\ 0.3 \ldots 0.6 \\ \hline \end{gathered}$
Coil Consumption	Inrush	[VA]	75
	Seal	[VA/W]	9.5/2.7
Operating Times	Pickup Time	[ms]	15... 30
	Dropout Time	[ms]	10... 60

Latch Attachment Release, CV7-11

Coil Consumption	AC	$[$ [VA/W]	$45 / 40$
	DC	$[\mathrm{W}]$	25
Contact Signal Duration		$[\mathrm{min} / \mathrm{max}]$	$0.03 \ldots 15 \mathrm{~s}$

Contact Signal Duration

[min/max] 0.03... 15 s

Timing Attachment, CRZE7, CRZA7

Reset Time

at min. time setting	$[\mathrm{ms}]$	10
at max. time setting	$[\mathrm{ms}]$	70
Repeat Accuracy		$\pm 10 \%$

Coil Data - Electronic DC

| $\begin{array}{l}\text { Voltage Range } \\ \hline \begin{array}{l}\text { Voltage } \\ \text { Code }\end{array}\end{array} \begin{array}{c}\text { Nominal Voltage US } \\ {[\mathrm{V} \mathrm{DC}]}\end{array}$ | | |
| :--- | :---: | :---: | \(\left.\begin{array}{c}Ratings

{\left[\mathrm{xU}_{\mathrm{s}}\right]}\end{array}\right\}\)

Average/Peak Pickup [W]	Hold-in [W]	$\begin{gathered} \text { Dropout Voltage } \\ {\left[x U_{s}\right]} \end{gathered}$	Pickup [ms]	Dropout [ms]
10/17	1.7	0.3...0.4	20... 50	20... 50
10/17	1.7			
10/17	1.7...1.9			
10/17	1.7...1.9	0.3...0.4	20... 50	23... 33
12/19	2.0...2.1			
14/22	2.7...3.0			

Control Relays Maximum Auxiliary Contacts

CS7 (AC and DC electronic coils, vertical mounting, $60^{\circ} \mathrm{C}$	$\frac{\operatorname{CS7}(\mathrm{E})-}{\underline{40 \mathrm{E}}}$	$\begin{aligned} & \frac{\operatorname{CS7}(\mathrm{E})-}{31 \mathrm{E}} \end{aligned}$	$\frac{\operatorname{CS7(E)-}}{\underline{22 E}}$	$\frac{\operatorname{CS7}(\mathrm{E})-}{\underline{04 \mathrm{E}}}$
Maximum N.O. Side Auxiliaries	2	2	4	2
Maximum N.C. Side Auxiliaries	4	4 (1)	4 1	2
Maximum N.O. Front Auxiliaries	4	4	4	4
Maximum N.C. Front Auxiliaries	4	4 (2)	2	0
Maximum N.O. Front + Side Auxiliaries	6	6	8	6
Maximum N.C. Front + Side Auxiliaries	7	5	5	2
Maximum N.O. + N.C. Front + Side Auxiliaries	8	8	8	6

(c) With no front auxiliary contacts installed. Otherwise 3 N.C. maximum.
(2) With no side mount auxiliary contacts installed. Otherwise 3 N.C. maximum.
(3) The hold-in demand of the CS7E is very low but the pick-up demand is approximately 1 ampere at 24 VDC. When sizing (dimensioning) a power supply for applications involving parallel switched contactors then multiply the peak demand by the number of contactors to be simultaneously switched and add to the hold-in demand of all other control circuit burdens, including other contactors, pilot devices, solenoids, etc.
(4) At 110VDC, coil code 110E has an operating range of $0.7 . . .1 .25 \mathrm{xUs}$

Utilization Category Table from EN 947-5-1

Verification of Making and Breaking Capacities of Switching Elements Under Normal Conditions
Corresponding to the Utilization Categories ©

Utilization Category	Normal Condition of Use								
	Make (3)			Break (3)			Number \& Rate of Making \& Breaking Operations		
	1/I	$\mathrm{U} / \mathrm{U}_{\mathrm{e}}$	$\operatorname{COS} \boldsymbol{\Psi}$	$1 /{ }_{\text {e }}$	$\mathrm{U} / \mathrm{U}_{\text {e }}$	$\operatorname{COS} \boldsymbol{\Psi}$	No. of operating cycles ©	Operating cycles per minute	$\begin{gathered} \text { ON time }(\mathrm{s}) \\ \boldsymbol{\ominus} \\ \hline \end{gathered}$
AC-12 ©	1	1	0.9	1	1	0.9	6050	6	0.05
AC-13 ©	2	1	0.65	1	1	0.65	6050	6	0.05
AC-14 ©	6	1	0.3	1	1	0.3	6050	6	0.05
AC-15 ©	10	1	0.3	1	1	0.3	6050	6	0.05
DC			$T_{0.95}$			$T_{0.95}$			
DC-12	1	1	1 ms	1	1	1 ms	6050	6	0.05 ©
DC-13	1	1	$6 \times P$ (4)	1	1	$6 \times P$ (4)	6050	6	0.05 ©
DC-14 ©	10	1	15 ms	1	1	15 ms	6050	6	0.05 ©

$\mathrm{I}_{\mathrm{e}} \quad$ Rated operational current $P=U_{e} l_{e}$ steady-state power consumption (W)
$U_{e} \quad$ Rated operational voltage. Current to be made or broken.
$T_{0.95}$ Time to reach 95% of the steady-state current (ms) UVoltage before make

NEMA Ratings and Test Values for AC (50 and 60 Hz) and DC Control Circuits Contacts

Designation ©	Utilization Category	Therm. Continuous Test Current (A)	Maximum Current								VA	
			120 V		240 V		480 V		600 V			
AC			Make	Break								
A150	AC-15	10	60	6.00	\sim	\sim	\sim	\sim	\sim	\sim	7200	720
A300	AC-15	10	60	6.00	30	3.00	\sim	\sim	\sim	\sim	7200	720
A600	AC-15	10	60	6.00	30	3.00	15	1.50	12	1.20	7200	720
B150	AC-15	5	30	3.00	\sim	\sim	\sim	\sim	\sim	\sim	3600	360
B300	AC-15	5	30	3.00	15	1.50	\sim	\sim	\sim	\sim	3600	360
B600	AC-15	5	30	3.00	15	$1 . .50$	7.5	0.75	6	0.60	3600	360
C150	AC-15	2.5	15	1.50	~	~	~	~	\sim	\sim	1800	180
C300	AC-15	2.5	15	1.50	7.5	0.75	\sim	\sim	\sim	\sim	1800	180
C600	AC-15	2.5	15	1.50	7.5	0.75	3.75	0.375	3	0.30	1800	180
D150	AC-14	1.0	3.60	0.60	\sim	\sim	\sim	\sim	\sim	\sim	432	72
D300	AC-14	1.0	3.60	0.60	1.8	0.30	\sim	\sim	\sim	\sim	432	72
E150	AC-14	0.5	1.80	0.30	~	~	\sim	\sim	\sim	\sim	216	36
$2 \mathrm{xA300}$	AC-15	20	120	12	60	6.00	\sim	\sim	\sim	\sim	14400	1440
2 x A600	AC-15	20	120	12	60	6.00	30	3.00	24	2.40	14400	1440
DC			5...28V		125 V		250 V		301...600V		Make or Break at 300V or less [VA]	
N150	DC-13	10	10		2.2		\sim		\sim		275	
N300	DC-13	10	10		2.2		1.1		\sim		275	
N600	DC-13	10	10		2.2		1.1		0.40		275	
P150	DC-13	5.0	5.0		1.1		\sim		\sim		138	
P300	DC-13	5.0	5.0		1.1		0.55		\sim		138	
P600	DC-13	5.0	5.0		1.1		0.55		0.20		138	
Q300	DC-13	2.5	2.5		0.55		0.27		0.11		69	
Q600	DC-13	2.5	2.5		0.55		0.27		0.11		69	
$2 \times \mathrm{P} 600$	DC-13	10	102.2		2.2		1.1		0.40		275	

(1) See sub-clause 8.3.3.5.2
(2) For tolerances on test quantities, see sub-clause 8.3.2.2
(3) The first 50 operating cycles shall be run at $\mathrm{U} / \mathrm{Ue}=1.1$ with the loads set at Ue
(4) The value " $6 \times \mathrm{P}$ " results from an empirical relationship which is found to represent most $D C$ magnetic loads to an upper limit of $P=50 \mathrm{~W}$, i.e. $6 \times P=300 \mathrm{~ms}$.
© The ON time shall be at least equal to T 0.95
© Where the break current differs from the make current value, the ON time refers to the make current value after which the current is reduced to break current value for a suitable period e.g., 0.05 s .

- This is the NEMA Contact Rating Designation, where the letter stands for the conventional thermal current and identifies AC or DC : e.g., $\mathrm{B}=5 \mathrm{~A} A C$. The number that follows is the rated insulation voltage.

Series CS7 Industrial Control Relays (AC and Electronic DC)

Dimensions are in millimeters (inches). Dimensions not intended for manufacturing purposes.

Catalog Number	Coil Code	a	b	b1	C	c1	c2	$\square \mathrm{d}$	d1	d2
CS7 (AC)	All	$\begin{gathered} 45 \\ (1-25 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 81 \\ (3-3 / 16) \\ \hline \end{gathered}$	\sim	$\begin{gathered} \hline 80.5 \\ (3-11 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 75.5 \\ (3-3 / 32) \end{gathered}$	$\begin{gathered} \hline 6 \\ (1 / 4) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { (} 4.5 \\ & (3 / 16) \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ (2-23 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ (1-25 / 64) \\ \hline \end{gathered}$
CS7 (Electronic DC)	12E...24E	$\begin{gathered} 45 \\ (1-25 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 81 \\ (3-3 / 16) \\ \hline \end{gathered}$	\sim	$\begin{gathered} 80.5 \\ (3-11 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 75.5 \\ (2-31 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ (15 / 64) \\ \hline \end{gathered}$	$\begin{aligned} & 14.5 \\ & (3 / 16) \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ (2-23 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ (1-3 / 8) \\ \hline \end{gathered}$
	36E...220E	$\begin{gathered} 45 \\ (1-25 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 81 \\ (3-3 / 16) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ (15 / 16) \\ \hline \end{gathered}$	$\begin{gathered} 80.5 \\ (3-11 / 64) \\ \hline \end{gathered}$	$\begin{gathered} 75.5 \\ (2-31 / 32) \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ (15 / 64) \end{gathered}$	$\begin{aligned} & \hline \text { (} 4.5 \\ & (3 / 16) \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ (2-23 / 64) \end{gathered}$	$\begin{gathered} 35 \\ (1-3 / 8) \end{gathered}$

Relays \& Accessories (+...)

Relays with...	Dim. [mm]	Dim. [inches]	
auxiliary contact block for front mounting	2-, or 4-pole	$\mathrm{c} / \mathrm{c} 1+39$	$\mathrm{c} / \mathrm{c} 1+1-37 / 64$
auxiliary contact block for side mounting	1-, or 2-pole	$\mathrm{a}+9$	$\mathrm{a}+23 / 64$
pneumatic timing module		$\mathrm{c} / \mathrm{c} 1+58$	$\mathrm{c} / \mathrm{c} 1+2-23 / 64$
electronic timing module	on coil terminal side	$\mathrm{b}+24$	$\mathrm{~b}+15 / 16$
mechanical latch		$\mathrm{c} / \mathrm{c} 1+61$	$\mathrm{c} / \mathrm{c} 1+2-31 / 64$
interface module	on coil terminal side	$\mathrm{b}+9$	$\mathrm{~b}+23 / 64$
surge suppressor	on coil terminal side	$\mathrm{b}+3$	$\mathrm{~b}+1 / 8$
Labeling with...	label sheet	+0	+0
	marking tag sheet with clear cover	+0	+0
	marking tag adapter for V7 Terminals	+5.5	$+7 / 32$

Mounting Position

Front View
Side View
AC \& Electronic DC control relays

CS8
Industrial
Control
Relays

The miniature relay system with big advantages

CS8 front mount auxiliaries are positive guidance

Despite increasing complexity, control systems and installations must become increasingly compact. And the CS8 Miniature Relay System packs maximum performance into minimum space.

Small but rugged

Sprecher + Schuh has subjected this relay series to monitored endurance tests that demonstrate their ruggedness. Under normal duty, CS8 contacts have an electrical life of 700,000 operations, while the AC magnet system has a mechanical life of $15,000,000$ operations.

The coil is designed for absolute undervoltage reliability. Undervoltages that do not cause the contactor to close can be withstood indefinitely without damage.

The body of the device is sturdy as well. The front housing, containing the phase partitions and screwdriver guides, is manufactured in one piece. Front and rear housing are then joint fitted together.

Superior Contact Reliability

The standard CS8 base relay and auxiliary contacts are bifurcated H-bridge design which divides each movable contact into two sections at the tip of the spanner which provides a higher degree of reliability for low signal applications. Perfect fit for PLC and other electronic circuits operate at signals as low as 15 V @ 2 mA .

Mechanically linked contacts for safety

The CS8 control relay are the perfect choice for fail-safe control circuits to meet mechanically linked performance per IEC 60947-4-1. Mechanically linked is an interlock contact design that maintains minimum 0.5 mm clearance which prevents the NC contact from reclosing if the NO contact is welded when in operation. This feature applies to CS8 base relays with AC \& DC coils; base relays and add-on auxiliaries for DC coils only.

Accessories require no additional panel space

The entire CS8 system is logically engineered. Auxiliary contact blocks are modular and snap-on without increasing the CS8's original width of 45 mm . Also, due to its sideways switching movement, the basic relay has the same low profile whether an AC or DC operating magnet is used. This permits the use of enclosures with shallow mounting depths. Once the CS8 is installed, all auxiliary contact blocks can be snapped on or removed without changing any existing wiring.

Auxiliary components provide flexibility

CS8 auxiliary components allow you to convert the basic four pole relay up to an 8 pole relay.

Effortless installation

CS8 relays are DIN-rail mountable for instant installation and modification. Fittings are also included for base mounting. All terminals are clearly marked and shipped in the open position for installation with either manual or power screwdrivers. Using self-adhesive labels, or plastic clip-on tags.

The entire line is cULus Listed and CE Certified and offers finger and back of hand protection to the strictest international standards.

CS8 Complete Assemblies - 4 Pole

CS8 Relay	Contact Arrangement and Numbering	Contacts		AC Operation	DC Operation
		NO	NC	Catalog Number	Catalog Number
		4	0	CS8-40E-*	CS8C-40E-*
		3	1	CS8-312-*	CS8C-312-*
		2	2	CS8-22Z-*	CS8C-22Z-*
		$\begin{aligned} & 1+ \\ & \text { 1EM } \end{aligned}$	$\begin{gathered} 1+ \\ 1 L B \end{gathered}$	CS8-L222-*	CS8C-L22Z-*

Standard	Circuit Voltage	$\begin{gathered} \text { Make } \\ (\mathrm{Amps} / \mathrm{VA}) \end{gathered}$	$\begin{gathered} \text { Break } \\ \text { (Amps/VA) } \end{gathered}$	Continuous Amps
B600	$\begin{aligned} & 120 \mathrm{AC} \\ & 240 \mathrm{AC} \\ & 480 \mathrm{AC} \\ & 600 \mathrm{AC} \\ & \hline \end{aligned}$	30A/3600VA 15A/3600VA 7.5A/3600VA $6 \mathrm{~A} / 3600$	$\begin{aligned} & 3.0 \mathrm{~A} / 360 \mathrm{VA} \\ & 1.5 \mathrm{~A} / 360 \mathrm{VA} \\ & 0.75 \mathrm{~A} / 360 \mathrm{VA} \\ & 0.60 \mathrm{~A} / 360 \mathrm{VA} \end{aligned}$	10
Q600	$\begin{gathered} 125 D C \\ 250 D C \\ 301-600 \mathrm{DC} \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.52 \mathrm{~A} / 69 \mathrm{VA} \\ 0.27 \mathrm{~A} / 69 \mathrm{VA} \\ 0.1 \mathrm{~A} / 69 \mathrm{VA} \end{gathered}$	0.55A/69VA $0.27 \mathrm{~A} / 69 \mathrm{VA}$ 0.1A/69VA	2.5

Mechanical Link

- Base relay meets IEC 60947-5-1.

See page G20 for additional information.

AC Coil Codes ©

$\begin{gathered} \text { AC } \\ \text { Coil Code } \end{gathered}$	Voltage Range	
	50 Hz	60 Hz
12	12 V	12 V
242	24 V	24 V
482	48 V	48 V
120	110 V	120 V
208	200V-220V	208V-220V
240	240 V	240 V
380 ©	Use Coil Code 400	
400 ©	400 V	400 V
480	440 V	480V
575 ©	Use Coil Code 600	
600 ©	525 V	600 V

Ordering Instructions

Specify Catalog Number	
Replace (\square) with Coil Code	See Coil Codes on this page

(1) The coil codes shown are for the most commonly stocked items. Contact your Sprecher + Schuh representative to determine if other voltages are on-hand or can be specially ordered in quantity.
(2) Integrated diode surge suppressor coils available. Order coil code 24DD. For example CS8C-22Z-24D becomes CS8C-22Z-24DD.
(3 Contacts are bifurcated (H-bridge) with a minimum current rating of $2 \mathrm{~mA} @ 15 \mathrm{~V}$.
(4) The European Community has agreed that 400 V is the nominal voltage in lieu of 380 V . Use this code when 380 V is required.
(5) Use this code for 575V applications.

Auxiliary Contact Blocks (2 \& 4 Pole) ©®

Miscellaneous Accessories

Accessory	Description	Catalog Number
	Surge Suppressor CR_8 - for limiting voltage spikes when switching off coil. Coil itself provides sufficient limitation at voltages over 240V. RC Link (Type CRC8...) for AC Control $\begin{aligned} & 24-48 \text { VAC } \\ & 110-280 V A C \\ & 380-480 V A C \end{aligned}$	CRC8-50 CRC8-280 CRC8-480
	Diode Link (Type CRD8...) for DC Control © 12-250VDC (diode)	CRD8-250
	```Varistor Link (Type CRV8...) for AC/DC Control 12-55VAC/12-77VDC 56-136VAC/78-180VDC 137-277VAC/181-250VDC```	CRV8-55 CRV8-136 CRV8-277

(1) Auxiliary contact ratings per UL 508/NEMA (B600/Q600). Contacts are bifurcated (H-bridge) with a minimum current rating of 15V@2mA.
(2) CS8 relays with 24 VDC coils can be special ordered with integrated diodes (built-in) rather than applying CRD8 to the coil terminals.
(3) Base relay with add-on auxiliaries meet mechanically linked IEC 60947-5-1 for CS8 DC coil versions only. See page G20 for additional information.

## Technical Information

			CS8	Auxiliary Contacts
Electrical			B600, Q600	B600, Q600
Contact Ratings — NEMA				
Contact Ratings — IEC	$24 . \ldots 120 \mathrm{~V}$	$[\mathrm{~A}]$	3	3
AC-15 (solenoids,	$230 \ldots 240 \mathrm{~V}$	$[\mathrm{~A}]$	2	2
contactors)	400 V	$[\mathrm{~A}]$	1.2	1.2
at rated voltage	$480 \ldots 500 \mathrm{~V}$	$[\mathrm{~A}]$	1	1
IEC 947, EN 60947	$600 \ldots 690 \mathrm{~V}$	$[\mathrm{~A}\}$	0.6	0.6
NEMA B600				
AC-12 (Rated thermal current)			10	10
$\quad$ Ambient Temperature $40^{\circ} \mathrm{C}$	$I_{\text {th }}$	$24 \ldots 690 \mathrm{~V}$	$[\mathrm{~A}]$	10
Ambient Temperature $60^{\circ} \mathrm{C}$	$I_{\text {th }}$	$24 \ldots 240 \mathrm{~V}$	$[\mathrm{~A}]$	6



Mechanically Linked Contacts and Mirror Contact Performance

Type	Coil	Add-on   Auxiliary   Contact	Conforms   to IEC	Status
CS8	AC or DC	None	$60947-5-1$	Mechanically linked within the base relay
	DC	Yes	$60947-5-1$	Mechanically linked within the base relay and with add-on   auxiliary contacts
	AC	Yes	$\sim$	Mechanically linked within the base relay only

## Definitions

- Mechanically linked contacts (IEC 60947-5-1 Annex L):
- N.C. Auxiliary Contact will not re-close if a N.O. power pole welds.
- N.O. Power Pole or Auxiliary Contact will not close if N.C. contact welds
- The term "Positive Guided" contacts is the same as mechanically linked.


## Technical Information



## Series CS8 Industrial Control Relays

Dimensions are in millimeters (inches). Dimensions not intended for manufacturing purposes.


Mounting Position with Accessories


* Minimum distance to grounded parts or walls

Contactor with...			
with aux. contact block	Dim. [mm]	Dim.	
[inches]			
with timer	on contactor	78.7	3.1
	at side of contactor	66.9	3.25
with neutral terminal	at side of contactor	64.9	2.63
with nameplate		51	2.56



## Precision economical DIN-rail mounted timing relays



## Features

- Each relay is equipped with LEDs that indicate supply of power and output status conditions.
- Finger and back of hand protection to IP40.
- Terminals are captive and supplied in the open position.
- RZ7's can be surface mounted, rail mounted, or mounted directly on our family of CA7/CS7 devices.
- RZ7 relays can be mounted in anyplane.
- Terminals, setting knob and LED's are all accessible from the front of the unit.
- RZ7 Timing Relays are very compact


The RZ7-FS multifunction Electronic Timing Relay


The RZ7-FE multifunction Electronic Timing Relay

## RZ7-FE

RZ7-FE electronic timing relays offer eight popular output functions in an economical package. This series is especially designed for applications where a high quality, yet basic timing relay is required. Timing formats include ON delay, OFF-delay, Wye-Delta and five other choices. All models are multi-time relays, meaning that various time ranges (from 0.05 seconds to 100 hours) can be selected from the face of the relay.

RZ7-FE timing relays operate with multiple supply voltages ranging from $24-48 \mathrm{VDC}$ or $24-240 \mathrm{VAC}$ ( $12-240 \mathrm{VAC}$ or DC on 2-pole multi-function). Universal voltage capability means smaller inventories and more flexibility. The RZ7-FE series has one single pole double throw (SPDT) contact. This series has several technical advantages such as shorter impulse duration requirements and a faster recovery time.

RZ7-FS timing relays operate with multiple supply voltages ranging from $24-48 \mathrm{VDC}$ or $24-240 \mathrm{VAC}$ (some other voltages are available on multi-function and special function timers) The standard RZ7-FS is supplied with one single pole double throw (SPDT) contact within a compact case only 22.5 mm wide. If more contacts are required, several relays are available that provide two separate, electrically isolated SPDT contacts within the same narrow footprint.

## Overview



Type	DIN Rail Timer	DIN Rail Timer
Features	- Only 22.5 mm wide   - 5A contact rating   - Multifunction or single function   - Wye-delta timing function   - True OFF-Delay timing function	- Only 17.5 mm wide   - 5 A contact rating   - Multifunction or single function   - Wye-Delta timing function
Control Outputs	SPDT or DPDT	SPDT
Operation Modes	A ON-Delay   A+ Accumulative ON-Delay   B OFF-Delay with Auxiliary Voltage   C ON-Delay and OFF-Delay, Symmetrical   D Impulse-ON   E Impulse-OFF with Auxiliary Voltage   F Flasher, Starting with ON   FG Flasher, Starting with ON or OFF   G Flasher Starting with OFF   I Fixed Impulse with Adjustable Time Delay   K One Shot with B1   L Pulse Former   M Adjustable Impulse with Fixed Time Delay   Q OFF-Delay without Auxiliary Voltage   T ON/OFF-Function   Y Wye-Delta Timing Relay   Y1 Wye-Delta Change-over with Impulse Function	A ON-Delay   B OFF-Delay   D One shot   E Fleeting OFF-Delay   F Flasher, Repeat cycle-pulse   G Flasher, Repeat Cycle Starting with Pause   L Pulse converter, Pulse Former   Y Wye-Delta Timing Relay
Time Range	0.05 s ... 300 hr	$0.05 \mathrm{~s} . . .100 \mathrm{hr}$
Supply Voltage	24V...48V DC   24V...240V AC   380...440V AC	$\begin{gathered} 24 \ldots . .48 \mathrm{~V} \mathrm{DC} \\ 24 \ldots 240 \mathrm{~V} \mathrm{AC} \\ 12 \ldots . .240 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \end{gathered}$
Contact Rating at 120V AC	5 A	5 A
Certifications	cULus, CE, UKCA, C-tick	cULus, CE, UKCA, C-tick
Mounting	DIN Rail or panel mount	DIN Rail or panel mount

## RZ7-FS Timing Relays

## Single Function

Operating Mode	Contact Output	Timing Range 1	Input Voltage	Catalog Number
ON-Delay	(SPDT) 1 C/0	0.05 s... 300 hr	$\begin{gathered} 24 \ldots 48 \mathrm{VDC} \\ 24 . \ldots 240 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	RZ7-FSA6UU23
	(DPDT) $2 \mathrm{C} / 0$			RZ7-FSA7UU23
OFF-Delay	(SPDT) 1 C/0			RZ7-FSB6UU23
	(DPDT) $2 \mathrm{C} / 0$			RZ7-FSB7UU23
One Shot w/B1	(SPDT) $1 \mathrm{C} / 0$			RZ7-FSK6UU23

Multi-Function This device allows the flexibility of selecting the appropriate timing function.

Operating Mode	Contact Output	Timing Range 1	Input Voltage	Catalog Number
Multi-function timing relays 10 Single-functions:	(SPDT) $1 \mathrm{C} / 0$	0.05 s... 300 hr	$\begin{gathered} 24 \ldots . \ldots 8 \mathrm{VDC} \\ 24 . .240 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	RZ7-FSM6UU23
A, A+, B, C, T, D, E, FG, L, and Y 1	(DPDT) $2 \mathrm{C} / 0$			RZ7-FSM7UU23
further description.			380...440V AC	RZ7-FSM7UA40
Multi-function timing relays 7 Single-functions: A, T, D, I, M, F, and G See function diagrams for further description.	(DPDT) $2 \mathrm{C} / \mathrm{O}$		$\begin{gathered} 24 \ldots 48 \mathrm{VDC} \\ 24 \ldots 240 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	RZ7-FSM8UU23

## Special Function

Operating Mode	Contact Output	Timing Range (2)	Input Voltage	Catalog Number
OFF-Delay without supply voltage	(SPDT) 1 C/O	0.05 s... 10 min		RZ7-FSQ6QU18
	(DPDT) $2 \mathrm{C} / 0$		$50 / 60 \mathrm{~Hz}$	RZ7-FSQ7QU18
Wye-Delta timing relay	$2 \mathrm{C} / 0$		$\begin{gathered} 24 \ldots 48 \mathrm{VDC} \\ 24 . . .240 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	RZ7-FSY7UU23
			380...440V AC	RZ7-FSY7UA40

Accessories

Accessory	Description	Catalog Number
	Panel Mounting Adapter	



## RZ7-FS High Performance

 Timing Relay- Adjustable function and timing range timing relays
- DIN Rail mounted without cost of socket
- 22.5 mm wide multi-function or single functions
- Available as SPDT or DPDT contact output, 5A
- Timing Ranges From $0.05 \mathrm{~s} . . .300 \mathrm{hr}$
- Coil Surge Protection

Function Diagrams - RZ7-FS Relays
(A) ON-Delay

(A+) Accumulative ON-Delay

(B) OFF-Delay with Auxiliary Voltage

(C) ON-Delay and OFF-delay, Symmetrical

(D) Impulse-ON

(E) Impulse-OFF with Auxiliary Voltage

$t=$ adjusted pulse time
(1) For timing control, a voltage other than the supply voltage can also be used.
(F) Flasher, Starting with 0N

(FG) Flasher, Starting with ON or OFF

(G) Flasher, Starting with OFF

(I) Fixed Impulse with Adjustable Time Delay

$t_{1}=$ adjusted time delay
$\mathrm{t}_{2}=$ pulse time fixed 500 ms
(K) One Shot with B1

(L) Pulse Former

= adjusted pulse time

## Function Diagrams - RZ7-FS Relays - Continued

(M) Adjustable Impulse with Fixed Time Delay

$t_{1}=$ adjusted pulse time
$\mathrm{t}_{2}=$ time delay fixed 500 ms
(T) ON/OFF-Function

(Y1) Wye-Delta Change-over with Impulse Function

(Q) OFF-Delay without Auxiliary Voltage

(Y) Wye-Delta Change-over


## Legend

- U - green LED: $\sqrt{\text { c control supply voltage applied / תـ timing }}$
- R - yellow LED: $\sqrt{ }$ output relay energized


## RZ7-FE Timing Relays

Single-Function This device offers you one specific timing function.

Time Range	Contact Output	Timing Range 1	Input Voltage	Catalog Number
ON-Delay	SPDT (1 C/O)	0.05 s ... 100 hr	$\begin{gathered} 24 \mathrm{~V} . . .48 \mathrm{~V} \mathrm{DC} \\ 24 \ldots 240 \mathrm{~V} \mathrm{AC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	RZ7-FEA6TU23
OFF-Delay				RZ7-FEB6TU23
One Shot				RZ7-FED6TU23
Flasher (repeat cycle starting with pulse)				RZ7-FEF6TU23

Multi-Function This device offers you the flexibility of selecting one of 7 single timing functions.

Operating Mode	Contact Output	Timing Range ©	Input Voltage	Catalog Number
Multi-function timing relays 7 Single-functions: A, B, D, E, F, G, and L See function diagrams for further description.	SPDT (1 C/O)	0.05 s... 100 hr	$\begin{gathered} 24 \ldots . .48 \mathrm{~V} \mathrm{DC} \\ 24 . .240 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	RZ7-FEM6TU23
	DPDT (2 C/0)		12...240V AC/DC	RZ7-FEM6TZ12



RZ7-FE Economy Timing Relay

- Adjustable function and timing range timing relays
- DIN Rail mounted without cost of socket
- 17.5 mm wide, multi-function or single function
- SPDT contact output, 5 A
- Timing ranges from $0.05 \mathrm{~s} . . .100 \mathrm{hr}$
- Coil Surge Protection

Special Functions This device offers you one specific timing function.

Operating Mode	Contact Output	Timing Range (3)	Input Voltage	Catalog Number
Wye-Delta	$2 \text { N.O. with } 1$ Common	0.15 s... 10 min	$\begin{gathered} \text { 24V...48V DC } \\ 24 . . .240 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	RZ7-FEY6QU23

Accessories

Accessory	Description	Catalog Number
	Panel Mounting Adapter	RZ7-FSPMA
IMPORTANT	Versatile Mounting: The RZ7-FE timing relay can be panel or DIN rail mounted. For best long-   term performance, allow at least 10 mm (.04 in.) of space on each side of the relay for proper   ventilation when operating in temperatures above $40^{\circ} \mathrm{C}$ ( $\left.1044^{\circ} \mathrm{F}\right)$.	

© Time ranges: $0.05 \ldots 1 \mathrm{~s}, 0.5 \ldots 10 \mathrm{~s}, 5 \ldots 100 \mathrm{~s}, 0.5 \ldots 10 \mathrm{~min}, 5 \ldots 100 \mathrm{~min}, 0.5 \ldots 10 \mathrm{~h}, 5 \ldots . .100 \mathrm{~h}$
(2 Time ranges: $0.05 \ldots 1 \mathrm{~s}, 0.5 \ldots 10 \mathrm{~s}, 5 \ldots 100 \mathrm{~s}, 0.5 \ldots 10 \mathrm{~min}$

Function Diagrams - RZ7-FE Relays
(A) ON-Delay

(D) One Shot [Impulse On]

(E) Fleeting OFF-Delay [Impulse Off]

(Y) Wye-Delta Timing Relay

(L) Pulse Converter [Pulse Former]

(G) Flasher [Repeat Cycle Starting with Pause]

$\mathrm{t}=$ adjusted flashing time

## Legend

- U- green LED: $\sqrt{ }$ control supply voltage applied /
- R - yellow LED: $\sqrt{ }$ output relay energized

General Data	RZ7-FS Relays 1	RZ7-FE Relays 1
Insulation Characteristics	$2 \mathrm{kVAC} / 50 \mathrm{~Hz}$ test voltage according to VDE 0435 and $4 \mathrm{kV} 1.2 / 50 \mu \mathrm{~s}$ surge voltage according to IEC $60947-1$ between all inputs and outputs	
EMC/Interference Immunity	Performance of following requirements:   Surge capacity of the supply voltage according to IEC 61000-4-5: 2 kV   Burst according to IEC 1000-4-4: 6 kV 6/50 ns   ESD discharge according to IEC 61000-4-2: Contact 6 kV , air 8 kV	The following requirements are fulfilled:   Surge capacity of the supply voltage according to IEC 61000-4-5: Level 4   Burst according to IEC 61000-4-4: Level3   ESD discharge according to IEC 61000-4-2: Level 3
EMC/Emission	Electromagnetic fields according to EN 55022 : class B	
Safe Isolation	According to VDE 106, part 101	
Relative Humidity	25... $85 \%$	
Vibration Resistance, operating	1 G	
Vibration Resistance, nonoperating	4G	
Shock Resistance, operating	7G	
Shock Resistance, nonoperating	50 G	
Ambient Temperature, operating	$-25 . .+60^{\circ} \mathrm{C}$	
Ambient Temperature, nonoperating	$-40 . . .85^{\circ} \mathrm{C}$	
Control Terminals	Tightening torque ( $0.6 \ldots . .0 .8 \mathrm{Nm}$ ) $1 \times 0.5 \ldots .4 .0 \mathrm{~mm}^{2}$ or $2 \times 0.5 . .2 .5 \mathrm{~mm}^{2}$ (solid) $1 \times 18 . .14$ AWG or $2 \times 18 . .16$ AWG (stranded) Finger protection according to EN 50274	Tightening torque ( $0.5 . . .0 .8 \mathrm{Nm}$ ) $1 \times 0.5 \ldots . .4 .0 \mathrm{~mm}^{2}$ or $2 \times 0.5 \ldots .2 .5 \mathrm{~mm}^{2}$ (solid) $1 \times 18 . .14$ AWG or $2 \times 18 \ldots 16$ AWG (stranded) Finger protection according to EN 50274
Panel Mounting	Front mounting; For snap-on mounting on 35 mm DIN Rail or screw fixing by panel mounting adapter and 2 screws (M4 type)	
Certifications	cULus Listed (File No. E14840, Guide NKCR/NKCR7), CE Marked, UKCA, C-tick	
Standards	EN/IEC 60947-1 EN/IEC 60947-5-1 UL 508 CAN/CSA C22.2 No.14	IEC/EN 63000 IEC 61812-1 UL 508 CAN/CSA C22.2 No.14


Specifications	RS7-FS Relays 1	RS7-FE Relays 1
Setting Accuracy	$\pm 6 \%$ of full scale	$\pm 10 \%$ of full scale
Repeatability	$\pm 0.2 \%$ of the setting values	$\pm 0.5 \%$ of setting (typical)
Tolerance	Voltage: $\pm 0.004 \% / \mathrm{V}$   Temperature: $\pm 0.035 \% /{ }^{\circ} \mathrm{C}$	Voltage: $\pm 0.001 \% / \% \Delta \mathrm{U}$ Temperature: $\pm 0.025 \% /{ }^{\circ} \mathrm{C}$
Supply		
Supply Voltages	$24 . . .48 \mathrm{~V} \mathrm{DC}$ and $24 . .240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$ (multi voltage)	24...48V DC and 24...240V AC, $50 / 60 \mathrm{~Hz}$
Voltage Tolerance	-15\%/+10\% AC/DC	
Power Consumption	Max 16 VA	max 3.5 VA
Time Energized	100\%	
Reset Time	$<80 \mathrm{~ms}$	50 ms
Cable Length (Supply Voltage Control)	Max. 50 m	
Pulse Control (B1)		
Pulse Duration	$\geq 20 \mathrm{~ms}$	
Input Voltage	Supply voltage range	
Input Current	1 mA	
Cable Length	Max. 50 m	

Outputs

Contact Type   Dielectric   Withstand   Voltage		Contact-to-coil	2 Form C - DPDT contacts, 1 Form C - SPDT contacts

Dimensions


Dimensions are in inches (millimeters). Dimensions not intended for manufacturing purposes.


# Precision DIN-rail mounted timing relays for any industrial application 



The multifunction RZ7-FSM Electronic Timing Relay provides eight different timing functions and ten different timing ranges.

Spfecher 4 Schut's RZ7-FS precision electronic timing relays offer 19 different output functions applicable to all types of industrial control. In addition to standard ON-Delay and OFF-Delay relays, the series also includes many specials such as an OFF-Delay that operates without supply voltage. Various timing ranges from 0.05 seconds to 60 hours are available, with many relays offering multi-time setting capability in the same device.

## Solid state accuracy and reliability

Except for their hard silver contacts, all RZ7-FS timing relays are built with solid state electronics and controlled by a microprocessor. They are accurate to within 0.2 percent. Their ruggedness and high level of accuracy is due to the thorough testing of function, timing characteristics and surge voltage strength performed on each device prior to shipment.

In addition, RZ7-FS relays function reliably from $15 \%$ under rated operating voltage to $10 \%$ over rated voltage (AC). Voltage tolerance is even greater in DC applications.

## Eliminates additional relays

The standard RZ7-FS is supplied with one single pole double throw (SPDT) contact within a compact case only 22.5 mm wide. If more contacts are required, several relays are available that provide two separate, electrically isolated SPDT contacts within the same narrow footprint. Output two is selectable as an instantaneous contact, which can eliminate the need for auxiliary relays in complex installations. These two pole relays can also be used with an external potentiometer for remote time setting.


## Multiple functions and timing ranges in one relay

The RZ7-FSM combines eight separate timing functions (plus ON and OFF functions) into one device. In addition, ten timing ranges are individually selectable from 0.05 seconds to 60 hours. These special relays reduce inventories and are ideal for maintaining remote installations where stocking several different timing relays would not be practical.

## Many safety and

 convenience features- Every RZ7 accepts a broad range of AC and DC supply voltages without special ordering.
- Each relay is equipped with an LED that indicates four output status conditions.
- Finger and back of hand protection to IP40.
- Terminals are captive and supplied in the open position.
- All RZ7's can be surface mounted, rail mounted, or mounted directly on our family of CA7/CS7 or CA8/CS8 devices.
- RZ7 relays can be mounted in any plane.
- Terminals, setting knob and LED's are all accessible from the front of the unit.
- RZ7 Timing Relays are very compact, measuring approximately 1" x 3 " x 4 ".
- Hazardous location timing relays also available.

Quick Selection Guide

Single Function Timing Relays				
RZ7-FS	A	3	A	U23
Type	Function   A On-Delay   B Off-Delay   C On and Off-Delay   D One Shot / Watchdog   E Fleeting Off-Delay   F Symmetric flasher starting with a pulse   G Symmetric flasher starting with a pause   I On-Delay pulse generator   J On-Delay (pulse controlled)   K One Shot / Watch Dog (pulse controlled)   L Impulse Converter	Contacts   All functions:   3 One single pole double throw contact   Functions A \& B only:   4 Two single pole double throw contacts (2)   (Available with Time Range "U" only. Not available with "U18" supply voltage)	Time Ranges   A $0.05 \ldots 1$ second   B $0.15 \ldots 3$ seconds   C $0.5 \ldots 10$ seconds   D $1.5 \ldots . .3$ seconds   E $0.05 \ldots .1$ minute   F $0.15 \ldots .3$ minutes   G $0.5 \ldots 10$ minutes   H $1.5 \ldots . .30$ minutes   I $0.05 \ldots 1$ hour   J $0.15 \ldots .3$ hours   K $0.5 \ldots 10$ hours   L $3.0 \ldots 60$ hours   U $0.05 s \ldots 60$ hours $\mathbf{0}$	Supply Voltages   Standard:   U23 24...48VDC   24... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$   Special Order:   U18* 24...240VAC or DC   A40 346...440V $50 / 60 \mathrm{~Hz}$ ( 8   Z12 12VDC   * Not available with Time Range " U "
RZ7-FS	Q	3	Q	U18
Type	Function   Q Off-Delay Without Supply Voltage	Contacts   3 One single pole double throw contact   4 Two single pole double throw contacts (2	Time Ranges   Q 0.15s... 10 minutes ©	Supply Voltages   U18 24...240VAC or DC


Multi-Function Timing Relay				
RZ7-FS	M	3	U	U23
Type	Function   M Multi-Function   Eight single functions plus ON \& OFF function (for installation/maintenance)   - On-Delay   - Off-Delay   - On and Off-Delay   - One Shot / Watchdog   - Fleeting Off-Delay   - Symmetric flasher starting with a   pulse	Contacts   3 One single pole double throw contact   4 Two single pole double throw contacts (1)	Time Ranges   U 0.05... 60 hours 0	Supply Voltages   Standard:   U23 24...48VDC   24... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$   Special Order:   U18 24...240VAC or DC   A40 $346 \ldots . .440 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ ©   Z12 12VDC

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Special Function Timing Relays} \\
\hline RZ7-FS \& H \& 3 \& U \& U23 \\
\hline Type \& \begin{tabular}{l}
Function \\
H Repeat Cycle Timer (Flasher) Includes four separate functions \\
- Supply voltage controlled, output starts with a pause \\
- Supply voltage controlled, output starts with a pulse \\
- Pulse controlled, outputstarts with a pause \\
- Pulse controlled, outputstarts witha pulse
\end{tabular} \& \begin{tabular}{l}
Contacts \\
All functions: \\
3 One single pole double throw contact
\end{tabular} \& \begin{tabular}{l}
Time Ranges \\
For equal timing of pulse and pause \\
U 0.05s... 60 hours © \\
For separate timing of pulse and pause \\
V \(2 \times 0.05 \mathrm{~s}\)... 60 hours

 \& 

\multicolumn{1}{|c}{ Supply Voltages } <br>
Standard: <br>
U23 $\quad 24 . .48 \mathrm{VDC}$ <br>
<br>
\multicolumn{2}{|c}{$24 \ldots 240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$} <br>
Special Order: <br>
A40 <br>
Z12 <br>
Z12...440V $50 / 60 \mathrm{~Hz}$ e <br>
<br>
\hline
\end{tabular} <br>

\hline RZ7-FS \& Y \& 2 \& C \& U23 <br>

\hline Type \& | Function |
| :--- |
Y Wye Delta Timing Relay	\&	Contacts	
2 Two normally open contacts	\&		Time Ranges
:---	:---:		
C	$0.5 \ldots .10$ seconds		
D	$1.5 \ldots .30$ seconds		
E	$0.05 \ldots 1$ minute		
F	$0.15 \ldots . .3$ minutes		
G	$0.5 \ldots 10$ minutes	\&   	

\hline
\end{tabular}

(1) Multi-time setting range. See Technical Section for specific time settings.
(2) Second output selectable as timed or instantaneous.
© Timers with supply voltage code A40 (346...440VAC) are not UL listed. RZ7-FSx4 models are not available with supply voltage code A40.

## RZ7-FS Timing Relays - Single Function, One and Two Pole

Functional Description	Functional Diagram	Terminal Arrangement	Type	Catalog Number
ON-Delay Timing Relay (A) When supply voltage is applied, output contact(s) change state after time delay $t$.			- One SPDT contact   - Single timing range	RZ7-FSA3*U23
			- One SPDT contact   - Multi-timing range (from 0.05 s to 60 h ) ©	RZ7-FSA3UU23
			- Two SPDT contacts (2)   - Multi-timing range (from 0.05 s to 60 h ) 4	RZ7-FSA4UU23
OFF-Delay Timing Relay (B) When control contact "S" closes, output contact(s) change state immediately. When control contact S opens, output contact(s) change state after time delay $t$. Constant supply voltage required on terminals A1/A2.   Note: Control pulse duration minimum 50ms (AC) - 30 ms (DC).			- One SPDT contact   - Single timing range	RZ7-FSB3*U23
			- One SPDT contact   - Multi-timing range (from 0.05 s to 60 h$) 4$	RZ7-FSB3UU23
			- Two SPDT contacts (2)   - Multi-timing range (from 0.05s to 60h) ©	RZ7-FSB4UU23
Off-Delay Without Supply Voltage (Q) © When supply voltage is applied, output contact(s) change state immediately. When supply voltage is removed, output contact(s) change state after time delay $t$.			- One SPDT contact   - Multi-timing range (from 0.15 s to 10 min$)$ ©	RZ7-FSQ3QU18
			- Two SPDT contacts   - Multi-timing range (from 0.15 s to 10 min ) ©	RZ7-FSQ4QU18

## Supply Voltage

Single Function RZ7-FS...U23 timers (except RZ7-FSQ) accept supply voltages of $24 \ldots 48 \mathrm{VDC}$ and $24 \ldots 240 \mathrm{VAC}$ (RZ7-FSQ accepts $24 . .240 \mathrm{VAC}$ or DC). Other voltages are available by special order. See Quick Selection Guide on page G24 for details or contact your Sprecher + Schuh representative for information.
(1) For timing control, a voltage other than the supply voltage can also be used.
(2) Output two is selectable as an instantaneous contact by sliding a switch on the faceplate.
(3) Bridge or potentiometer $10 \mathrm{k} \Omega$, min. 0.25 W (low voltage) for external time setting.
(4) Timing range is screwdriver selectable from the faceplate. Timing range selections include those found in the Timing Range Code chart.
(5) Timing range is screwdriver selectable from the faceplate. Exact timing ranges can be found in the Technical Section.
(6) Due to shock during shipment, the state of the contacts should be verified before initial use.

## Timing Range Codes

Replace (*) with Timing Range Code

Timing Range	Code
$0.05 \ldots 1 \mathrm{sec}$	A
$0.15 \ldots 3 \mathrm{sec}$	B
$0.5 \ldots 10 \mathrm{sec}$	C
$1.5 \ldots 30 \mathrm{sec}$	D
$0.05 \ldots 1 \mathrm{~min}$	E
$0.15 \ldots 3 \mathrm{~min}$	F
$0.5 \ldots 10 \mathrm{~min}$	G
$1.5 . .30 \mathrm{~min}$	H
$0.05 \ldots 1$ hour	I
$0.15 \ldots 3$ hour	J
$0.5 . \ldots 10$ hour	K
$3.0 \ldots 60$ hour	L



RZ7-FS two pole timing relay

## RZ7-FS Timing Relays - Single Function, One Pole

Functional Description	Functional Diagram	Terminal Arrangement	Type	Catalog Number
ON and OFF-Delay Timing Relay (C) When control contact "S" closes, output contact changes state after time delay $t$. When control contact S opens, output contact changes state again after time delay $t$. Constant supply voltage required on terminals A1/A2.   Note: Closure duration of S must be greater than $t$.			- One SPDT contact   - Single timing range	RZ7-FSC3*U23
One Shot / Watchdog Relay (D) When supply voltage is applied, the output contact changes state for time period $t$.			- One SPDT contact   - Single timing range	RZ7-FSD3*U23
Fleeting OFF-Delay Timing Relay (E) When control contact " S " is pulsed, output contact changes state for time period $t$.   Note: Control pulse duration minimum 50ms (AC) - 30ms (DC).			- One SPDT contact   - Single timing range	RZ7-FSE3*U23
Symmetric Flasher Starting   With A Pulse (F)   When supply voltage is applied, output contact changes state immediately and then repeatedly changes after every time period $t$, continuing until supply voltage is removed.			- One SPDT contact   - Single timing range	RZ7-FSF3*U23

## Supply Voltage

Single Function RZ7-FS...U23 timers accept supply voltages of 24...48VDC and 24...240VAC. Other voltages are available by special order. See Quick Selection Guide on page G24 for details or contact your Sprecher + Schuh representative for information.

## Timing Range Codes

Replace (*) with Timing Range Code

Timing Range	Code
0.05... 1 sec	A
$0.15 \ldots . .3 \mathrm{sec}$	B
$0.5 \ldots . .10 \mathrm{sec}$	C
$1.5 \ldots . .30 \mathrm{sec}$	D
0.05... 1 min	E
0.15... 3 min	F
$0.5 \ldots 10 \mathrm{~min}$	G
1.5... 30 min	H
0.05... 1 hour	I
0.15... 3 hour	J
0.5... 10 hour	K
3.0... 60 hour	L



RZ7-FS one pole timing relay

## RZ7-FS Timing Relays - Single Function, One Pole

Functional Description	Functional Diagram	Terminal Arrangement	Type	Catalog Number
Symmetric Flasher Starting   With A Pause (G)   When supply voltage is applied, output contact changes state after time period $t$ and then repeatedly changes again after every period $t$, continuing until supply voltage is removed.			- One SPDT contact   - Single timing range	RZ7-FSG3*U23
On-Delay Pulse Generator (I) When supply voltage is applied, output contact changes state after time period $t$. Output contact changes state again after 0.5 seconds.			- One SPDT contact   - Single timing range	RZ7-FSI3*U23
On-Delay (pulse controlled) (J) When control contact " $S$ " is pulsed, the output contact changes state after time period $t$.			- One SPDT contact   - Single timing range	RZ7-FSJ3*U23
One Shot / Watchdog (pulse controlled) (K) When control contact "S" closes, the output contact changes state immediately. After the last pulse of contact S, the output contact changes state after time delay $t$.			- One SPDT contact   - Single timing range	RZ7-FSK3*U23
Impulse Converter (L)   When a pulse is applied to control contact " S ", the output contact changes state immediately for time period $t$. Pulses received during timing period $t$ have no further effect.   Note: The period $t$ is not dependent on the length of the control pulse. Control pulse duration minimum $50 \mathrm{~ms}(A C)-30 \mathrm{~ms}(D C)$.			- One SPDT contact   - Single timing range	RZ7-FSL3*U23

## Supply Voltage

Single Function RZ7-FS..U23 timers accept supply voltages of $24 \ldots 48 \mathrm{VDC}$ and $24 \ldots 240 \mathrm{VAC}$. Other voltages are available by special order. See Quick Selection Guide on page G24 for details or contact your Sprecher + Schuh representative for information.

## Timing Range Codes

Replace (*) with Timing Range Code

Timing Range	Code
$0.05 . .1 \mathrm{sec}$	A
$0.15 . . .3 \mathrm{sec}$	B
0.5... 10 sec	C
$1.5 \ldots . .30 \mathrm{sec}$	D
$0.05 . . .1$ min	E
0.15... 3 min	F
0.5... 10 min	G
1.5... 30 min	H
0.05...1 hour	I
0.15...3 hour	J
0.5... 10 hour	K
3.0... 60 hour	L

## RZ7-FS Timing Relays - Multi-Function, One and Two Pole

RZ7-FSM   Multi-Function Relay	Functional Description	Type	Catalog Number
	Multi-Function Relay (M)   The RZ7-FSM multifunction relay combines eight timing functions plus ON and OFF functions (for installation and maintenance). Each timing function and timing range is selectable from the face of the relay with a screwdriver actuated knob. The RZ7-FSM offers the following timing functions:   On-Delay   Off-Delay	- One SPDT contact   - Multifunction, multi-timing range relay (from 0.05 s to 60 h ) ©	RZ7-FSM3UU23
	Fleeting Off-Delay Impulse Converter   On-Delay Pulse Generator Symmetric Flasher Starting   ON Function (see below) With a Pulse   OFF Function (see below)    The two pole RZ7-FSM4 offers two separate, electrically isolated single pole double throw (SPDT) contacts which allow applications in complex installations without additional auxiliary relays. This series may also be operated remotely via an external potentiometer.	- Two SPDT contacts ©   - Multifunction, multi-timing range relay (from 0.05 s to 60 h ) ©	RZ7-FSM4UU23

On-Delay (A)


On and Off-Delay (C)


Fleeting Off-Delay (E)


On-Delay Pulse Generator (I)


LED Шயா

## ON-Function




OFF-Function


Off-Delay (B)


One Shot / Watchdog (D)


LED - ாாாா


Symmetric Flasher Starting With a Pulse (F)


Impulse Converter (L)


Function display LED (Green)

	Output in rest position, no timing
I	Output in rest position, time running
	Output in operation position, no timing
	Output in operation position, time running

## Supply Voltage

The RZ7-FSM timer accepts supply voltages of $24 \ldots . .48 \mathrm{VDC}$ and $24 . . .240 V A C$. Other supply voltages are available by special order. See Quick Selection Guide on page G24 for details or contact your Sprecher + Schuh representative for information.
(1) For timing control, a voltage other than the supply voltage can also be used.
(2) Output two is selectable as an instantaneous contact by sliding a switch on the faceplate.
(3) Bridge or potentiometer $10 \mathrm{k} \Omega$, min. 0.25 W (low voltage) for external time setting.
(4) Function selection and timing range is screwdriver selectable from the faceplate. Exact timing range selections can be found in Technical Information.

## RZ7-FS Timing Relays - Special Function, One Pole

Functional Description	Functional Diagram	Terminal Arrangement	Type	Catalog Number
Wye-Delta Timing Relay ( $\mathbf{Y}$ )   When supply voltage is applied, output contact Y closes for time period $t$. After time period $t$, plus a fixed time period $t_{\mathrm{u}^{\prime}}$ ( $50-65 \mathrm{~ms}$ ) output contact $\Delta$ closes.			- Two single pole N.O. contacts   - Single timing range	RZ7-FSY2*U23
Repeat Cycle Timer (H) - (Flasher) The Repeat Cycle Timer offers four different operating characteristics within the same relay. Depending on how the unit is wired, cycles are initiated either by supply voltage being applied or by a pulse from control contact "S". Regardless of the activation method, each cycle may begin with a pause or a pulse.   The RZ7-FSH3U relay sets the pulse and pause durations within one timing range setting. The RZ7-FSH3V allows individual time settings of pulse and pause within two timing range settings. Both relays offer multiple time settings between 0.05 s and 60 h , selectable in ten increments.			- One SPDT contact   - Multi-timing range (from 0.05 s to 60 h ) (2   Provides (1) range setting for $t_{1}$ and $t_{2}$   Provides (2) range settings for $t_{1}$ and $t_{2}$	RZ7-FSH3UU23   RZ7-FSH3VU23

## Supply Voltage

These timers accept supply voltages of $24 \ldots 48 \mathrm{VDC}$ and $24 . . .240 V A C$. A supply voltage of $346 \ldots 440 V A C$ is also available by special order. See Quick Selection Guide on page G24 for details or contact your Sprecher + Schuh representative for information.

## Timing Range Codes

Replace (*) with Timing Range Code

Timing Range	Code
$0.5 \ldots 10 \mathrm{sec}$	C
$1.5 \ldots 30 \mathrm{sec}$	D
$0.05 \ldots 1 \mathrm{~min}$	E
$0.15 \ldots 3 \mathrm{~min}$	F
$0.5 \ldots 10 \mathrm{~min}$	$\mathbf{G}$


(1) For timing control, a voltage other than the supply voltage can also be used.
(2) Timing range is screwdriver selectable from the faceplate. Exact timing range selections can be found in Technical Information.

## RZ7 Hazardous Location Electronic Timing Relays

Sprecher+Schuh's RZ7 hazardous location relay timers have been designed to meet the stringent requirements of hazardous location applications while maintaining the functionality of the existing RZ7-FS family of timing relays. The RZ7-FSM4...-EX is a multi-function timing relay with 8 singlefunctions, SPDT or DPDT contact output, and adjustable timing ranges. The -EX models are ideal for control panels installed in hazardous location areas such as in the oil, gas and petrochem industries.

Multiple Approvals


RZ7-FSM4UU23-EX

-     - cULus Industrial Control Equipment for Hazardous Location Listed 87SL
- UL Class 1, Div. 2, Groups

A,B,C,D
UL Class 1, Zn 2, Group IIC

- Temperature Code T4A,
- 2A 32VDC max.


## RZ7-FS Hazardous Location Timing Relay - Single Function, One Pole 2

Functional Description	Functional Diagram	Terminal Arrangement	Type	Catalog Number
One Shot / Watchdog (pulse controlled) (K)   When control contact " S " closes, the output contact changes state immediately. After the last pulse of contact S, the output contact changes state after time delay $t$.			- One SPDT contact   - Single timing range $0.05 \ldots . .1$ second 0.5 ... 10 second	RZ7-FSK3AU23-EX RZ7-FSK3CU23-EX

## Supply Voltage

Single Function RZ7-FSK3...-EX timers accept supply voltages of 24...48VDC and 24...240VAC.
(1) For timing control, a voltage other than the supply voltage can also be used.
(2) Technical data and dimensional information for the RZ7-FS...-EX models are the same as the standard RZ7-FS models.

## RZ7-FS Hazardous Location Timing Relays - Multi-Function, One and Two Pole ©



## Supply Voltage

The RZ7-FSM timer accepts supply voltages of $24 \ldots 48 \mathrm{VDC}$ and 24...240VAC.
(1) For timing control, a voltage other than the supply voltage can also be used.
(2) Output two is selectable as an instantaneous contact by sliding a switch on the faceplate for RZ7-FSM4 model.
(3) Bridge or potentiometer $10 \mathrm{k} \Omega$, min. 0.25 W (low voltage) for external time setting for RZ7-FSM4 model.
(4) Function selection and timing range is screwdriver selectable from the faceplate. Exact timing range selections can be found in Technical Information.
(5) Technical data and dimensional information for the RZ7-FS...-EX models are the same as the standard RZ7-FS models.

RZ7-FE<br>Electronic<br>Timing<br>Relays

## The economical choice for most industrial timing applications

 combines all functions in one device.Sprechetachint RZ7-FE electronic timing relays offer seven popular output functions in an economical package. This series is especially designed for applications where a high quality, yet basic timing relay is required. Timing formats include ON-delay, OFF-delay, Wye-Delta and four other choices. All models are multi-time relays, meaning that various time ranges (from 0.05 sec onds to 10 hours) can be selected from the face of the relay.

## Solid state accuracy and reliability

Except for their hard silver contacts, all RZ7-FE timing relays are built with solid state surface mounted electronics and are accurate to within one percent. Their ruggedness and accuracy is due to the thorough testing of function, timing characteristics and surge voltage strength performed on each device prior to shipment.

In addition, RZ7-FE relays function reliably from $15 \%$ under rated operating voltage to $10 \%$ over rated operating voltage (AC). Voltage tolerance is even greater in DC applications.

## Universal voltage capability

All RZ7-FE timing relays operate with multiple supply voltages ranging from 24 VAC or DC to 240 VAC . Universal voltage capability means smaller inventories and more flexibility.

## Choose from two different output contacts

The RZ7-FE series has a choice between one normally open ( NO ) contact or one single pole double throw (SPDT) contact. The SPDT version can be used either normally open or normally closed. This version has several technical advantages such as shorter impulse duration requirements and a faster recovery time.


## Multiple functions in one relay

The RZ7-FEM relay combines four of the most popular timing functions into one device. Six timing ranges are included that are individually selectable from 0.05 seconds to 10 hours. This multifunction relay reduces inventories and is ideal for maintaining remote installations where stocking several different timing relays would not be practical.

## Many safety and convenience features

- Each relay is equipped with an LED that indicates output status conditions.
- Finger and back of hand protection to IP40.
- Terminals are captive and supplied in the open position.
- All RZ7's can be surface mounted, rail mounted, or mounted directly on our family of CA7/CS7 devices.
- RZ7 relays can be mounted in any plane.
- Terminals, setting knob and LED's are all accessible from the front of the unit.
- RZ7-FE Timing Relays are very compact, measuring approximately 1 " x 3 " x 3 ".


## Quick Selection Guide

Single Function Timing Relays						
RZ7-FE	A	1	T	U22		
Type	A On-Delay   B Off-Delay   D One Shot / Watchdog   E Fleeting Off-Delay (2)   F Symmetric flasher starting with a pulse   L Impulse Converter (2)	Contacts   Functions $A, B, D \& F$   1 One normally open contact	Time Ranges T 0.05s... 10 hours ©	U22	Supply Voltages 24VAC or DC 110...240V $50 / 60 \mathrm{~Hz}$	A1/A2
		All Functions:   3 One single pole double contact	T 0.05s... 10 hours ©	U23	24...48VDC   24... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	A1/A2


Multi-Function Timing Relays						
RZ7-FE		1	T	U22		
Type	Function   M Multi-function   Four single functions   - On-delay   - Off-delay   - One shot   - Symmetric flasher starting with a pulse	Contacts   1 One normally open contact	Time Ranges   T 0.05s... 10 hours	U22	Supply Voltages 24VAC or DC 110...240V 50/60Hz	A1/A2
		3 One single pole double contact	T 0.05s... 10 hours ©	U23	24...48VDC   24... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	A1/A2


Special Function Timing Relays						
RZ7-FE		2	Q	U23		
Type	Function	Contacts	Time Ranges		Supply Voltages	
	Y Wye-Delta Timing Relay	2 Two normally open contacts (one side common)	Q 0.15s... 10 minutes ©	U23	24...48VDC   24... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	$\begin{aligned} & \text { A1/A2 } \\ & \text { A1/A2 } \end{aligned}$

## Illustration for reference only. See selection tables for specific catalog numbers.

(1) Multi-time setting range. See appropriate catalog page for specific time settings.
(2) Not available in RZ7-FEx1 model.

## RZ7-FE Timing Relays - Single Function, One Pole

Functional Description	Functional Diagram	Terminal Arrangement	Type	Catalog Number
ON-Delay Timing Relay (A) When supply voltage is applied, output contact(s) change state after time delay $t$.			- One NO contact   - Multi-timing range (from 0.05s to 10h) ©   - Supply voltage selected via wiring terminals A1, A2   - Bicolored LED indicator	RZ7-FEA1TU22
			- One SPDT contact   - Multi-timing range (from 0.05s to 10 h ) (2)   - "Universal" terminals accept all appropriate supply voltages   - Bicolored LED indicator	RZ7-FEA3TU23
OFF-Delay Timing Relay (B)   When control contact B1 closes, the output contact changes state immediately. When control contact B1 opens, the output contact changes state after time delay $t$. Constant supply voltage required on terminals A1/A2 or $\mathrm{A} 3 / \mathrm{A} 2$.   Note: Control pulse duration minimum 250ms for RZ7-FEB1SU22;   50 ms (AC) and 30ms (DC) for RZ7FEB3TU23.			- One NO contact   - Multi-timing range (from 0.05s to 10h) (2)   - Supply voltage selected via wiring terminals A1, A2   - Bicolored LED indicator	RZ7-FEB1TU22
			- One SPDT contact   - Multi-timing range (from 0.05s to 10h) ©   - "Universal" terminals accept all appropriate supply voltages   - Bicolored LED indicator	RZ7-FEB3TU23
One Shot Relay / Watchdog (D) When supply voltage is applied, the output contact changes state for time period $t$.			- One NO contact   - Multi-timing range (from 0.05s to 10 h ) ©   - Supply voltage selected via wiring terminals A1, A2   - Bicolored LED indicator	RZ7-FED1TU22
			- One SPDT contact   - Multi-timing range (from 0.05s to 10h) (2)   - "Universal" terminals accept all appropriate supply voltages   - Bicolored LED indicator	RZ7-FED3TU23

## Supply Voltage

The last three digits in the catalog number represent the supply voltage range the relay will accept:
U22
24 V AC or DC
110... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
(A1/A2)
(A1/A2)
U23
$24 \ldots 48 \mathrm{VDC}$ and $24 \ldots 240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
(A1/A2)

## Timing Range Codes

RZ7-FE
$0.05 \ldots 1 \mathrm{sec}$
$0.5 \ldots 10 \mathrm{sec}$
$0.05 \ldots 1 \mathrm{~min}$
$0.5 \ldots 10 \mathrm{~min}$
$0.05 \ldots .1$ hour
$0.5 \ldots 10$ hour

## Bicolored LED

1 SPDT or 1 N.O. Contact Timers
alliv LED $U=$ Green: Supply voltage available
LED Relay = Red: Output is energized
OFF: No color


RZ7-FE timing relay
(1) For timing control, a voltage other than the supply voltage can also be used.
(2) Timing range is screwdriver selectable from the faceplate.

## RZ7-FE Timing Relays - Single Function, One Pole

Functional Description	Functional Diagram	Terminal Arrangement	Type	Catalog Number
Symmetric Flasher Starting   With A Pulse (F)   When supply voltage is applied, the output contact changes state immediately and then repeatedly changes after every time period $t$, continuing until supply voltage is removed.	$\begin{aligned} & \text { Output } \sqrt{\mathrm{t}+\sqrt{\mathrm{t}} \sqrt{\mathrm{t}}}{ }_{15^{18}}^{\text {A1/A2 }} \\ & \text { LED NVIV NIV } \end{aligned}$		- One NO contact   - Multi-timing range (from 0.05s to 10h) ©   - Supply voltage selected via wiring terminals A1, A2   - Bicolored LED indicator	RZ7-FEF1TU22
	Output		- One SPDT contact   - Multi-timing range (from 0.05s to 10 h ) (2   - "Universal" terminals accept all appropriate supply voltages   - Bicolored LED indicator	RZ7-FEF3TU23
Fleeting OFF-Delay Timing Relay (E) When control contact B1 is pulsed, the output contact changes state for time period $t$.   Note: Control pulse duration minimum 50ms (AC) - 30 ms (DC).			- One SPDT contact   - Multi-timing range (from 0.05s to 10 h ) (2   - "Universal" terminals accept all appropriate supply voltages   - Bicolored LED indicator	RZ7-FEE3TU23
Impulse Converter (L)   When a pulse is applied to control contact B1, the output contact changes state immediately for time period $t$. Pulses received during timing period $t$ have no further effect.   Note: The period $t$ is not dependent on the length of the control pulse. Control pulse duration minimum $50 \mathrm{~ms}(A C)-30 \mathrm{~ms}(D C)$.			- One SPDT contact   - Multi-timing range (from 0.05s to 10h) ©   - "Universal" terminals accept all appropriate supply voltages   - Bicolored LED indicator	RZ7-FEL3TU23

## RZ7-FE Timing Relays - Special Function, One Pole

Functional Description	Functional Diagram	Terminal Arrangement	Type	Catalog Number
Wye-Delta Timing Relay (Y) When supply voltage is applied, output contact Y closes for time period $t$. After time period $t$, plus a fixed time period $t_{u}$, (5065 ms ) output contact $\Delta$ closes.			- Two single pole N.O. contacts (one side common)   - Multi-timing range (from 0.15 s to 10 m ) (2)   - "Universal" terminals accept all appropriate supply voltages   - LED indicator	RZ7-FEY2QU23

## Supply Voltage

The last three digits in the catalog number represent the supply voltage range the relay will accept:

U22	24 V AC or DC	(A1/A2)
	$110 \ldots 240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	(A1/A2)
U23	$24 \ldots 48 \mathrm{VDC}$ and $24 \ldots 240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	(A1/A2)

Timing Range Codes

RZ7-FE with   NO or SPDT contact	RZ7-FEY with two   NO contacts
$0.05 \ldots 1 \mathrm{sec}$	$0.15 \ldots 3 \mathrm{sec}$
$0.5 \ldots 10 \mathrm{sec}$	$0.5 \ldots 10 \mathrm{sec}$
$0.05 \ldots 1 \mathrm{~min}$	$0.05 \ldots 1 \mathrm{~min}$
$0.5 \ldots 10 \mathrm{~min}$	$0.5 \ldots 10 \mathrm{~min}$
$0.05 \ldots 1$ hour	
$0.5 \ldots 10$ hour	

## Single Color LED

2 N.O. with Common
amb $\mathrm{ON}=$ Green: Output is energized
$\square$ OFF $=$ No Color

## Bicolored LED

1 SPDT or 1 N.O. Contact Timers
LED U = Green: Supply voltage available
LED Relay = Red: Output is energized
OFF: No color

## RZ7-FE Timing Relays - Multi-Function, One Pole



## Supply Voltage

The last three digits in the catalog number represent the supply voltage range the relay will accept:
U22 24V AC or DC
110...240V 50/60Hz
U23 24...48VDC and 24V...240V 50/60Hz
(A1/A2)
(A1/A2)
(A1/A2)

## Bicolored LED

1 SPDT or 1 N.O. Contact Timers
आlw LED U = Green: Supply voltage available
$\square$ LED Relay = Red: Output is energized

OFF: No color

Timing Range Codes

RZ7-FEM with
one NO or SPDT contact
:---:
$0.5 \ldots 10 \mathrm{sec}$
$0.05 \ldots 1 \mathrm{~min}$
$0.5 \ldots 10 \mathrm{~min}$
$0.05 \ldots 1$ hour
$0.5 \ldots 10$ hour

(1) For timing control, a voltage other than the supply voltage can also be used. (2) Timing range is screwdriver selectable from the faceplate.

## Accessories

Accessory	Description	Catalog Number
Setting Knob With Scale -		
For time setting without tools.		

## Marking Systems

Component	Description	Pkg.   Qty.	Catalog Number
132	Label Sheet -   1 sheet with 105 self-adhesive paper labels   each, $6 \times 17 \mathrm{~mm}$	1	CA7-FMS
	Marking Tag Sheet -   1 sheet with 160 perforated paper labels   each, 6 $\times 17 \mathrm{~mm}$. To be used with transparent   cover.	1	CA7-FMP
	Transparent Cover -   To be used with Marking Tag Sheets.	100   $\mathbf{0}$	CA7-FMC
	Tag Carrier -   For marking with Series V7 Clip-on Tags.	100   $\mathbf{0}$	CA7-FMA2

(2) The RZ7 timing relay can be panel or DIN rail mounted. For best long-term performance, allow at least 5 mm ( 0.2 in .) of space on each side of the relay for proper ventilation.

## Technical Data

Timing Characteristics (according to VDE 0435, Part 2021)		
Timing ranges for		
RZ7-FSM-A, B, C, D, E, F, I, \& L	(1s)	0.05... 1 sec
RZ7-FSH	(3s)	0.15... 3 sec
	(10s)	0.5... 10 sec
	(1mn)	0.05... 1 min
	(3mn)	0.15... 3 min
	(10mn)	0.5... 10 min
	(1h)	0.05... 1 hour
	(3h)	0.15... 3 hours
	(10h)	0.5... 10 hours
	(60h)	3... 60 hours
RZ7-FSQ	(2.5s)	0.15...2.5 sec
	(10s)	0.5... 10 sec
	(80s)	4... 80 sec
	(10mn)	0.5... 10 min
Setting accuracy	$\pm 5 \%$ of full scale value	
Repeatability	$\pm 0.2 \%$ of the setting values	
Tolerance	Voltage: $\pm 0.001 \% / \% \Delta U$	
	Temperature: $\pm 0.025 \% /{ }^{\circ} \mathrm{C}$	
Power Supply		
Supply voltages	24...48VDC and 24...240VAC, $50 / 60 \mathrm{~Hz}$ (multi voltage)	
	12VDC	
	24...240V AC or DC (universal voltage)	
	346...440VAC, $50 / 60 \mathrm{~Hz}$	
Voltage tolerance	AC: -15\%... +10\%	
	DC: $-20 \% \ldots+20 \%$	
Power consumption	$\begin{aligned} & \text { AC: } 5 \mathrm{VA} \text { at } \\ & 240 \mathrm{~V} \end{aligned}$	
	$\begin{aligned} & \text { DC: } 0.5 \mathrm{~W} \text { at } \\ & 24 \mathrm{~V} \end{aligned}$	
Time energized	100\%	
Reset time	50 ms	
Voltage interruption	$\leq 20 \mathrm{~ms}$ without reset (supply voltage)	
Input Impedance	Relay On: 3k-13k ohms	
Cable length (supply voltage control)	250 met	ft.) max.


Pulse Control (B1)   Impulse duration	$\geq 50 \mathrm{~ms}(\mathrm{AC}), \geq 30 \mathrm{~ms}(\mathrm{DC})$
Input voltage	Supply voltage range
Input current	1 mA
Max. Leakage Current	400 micro Amps
Cable length	max. $250 \mathrm{~m}(800 \mathrm{ft}$.$) without parallel load$
	between B1 \& A2
	max. $50 \mathrm{~mm}(160 \mathrm{ft}$.$) with load (<3 \mathrm{k} \Omega)$ between
	$\mathrm{B} 1 \& \mathrm{~A} 2$


Outputs   Type of outputs	Relay contacts: hard silver
Maximum admissible   operating voltage	Alternating current: 440VAC
Dielectric Coil to contact Withstand	$5,000 \mathrm{~V}$
Voltage	
Switching capacity	8 A (5A for RZ7-FSQ)
Current $I_{\text {tht }}:($ AC1 $)$	2000VA
Power:	according to IEC947-5-1:
	$3 \mathrm{~A} / 440 \mathrm{VAC}$ (inductive load, AC14)
	$3 \mathrm{~A} / 250 \mathrm{VAC}$ (inductive load, AC15)
	$1 \mathrm{~A} / 24 \mathrm{VDC}$ (inductive load, DC13)
	according to UL 508:
	$1.5 \mathrm{~A} / 250 \mathrm{VAC}(\mathrm{B} 300$ )
	$3 \mathrm{~A} / 120 \mathrm{VAC}(\mathrm{B} 300)$


Short circuit resistance	10 A gL (fast blow fuse)
Life expectancy (electrical)	4 million ops. at $1 \mathrm{~A} / 250 \mathrm{VAC}, \cos \varphi=1$
	0.2 million ops. at $6 \mathrm{~A} / 250 \mathrm{VAC}, \cos \varphi=1$
	1.5 million ops. at $1 \mathrm{~A} / 250 \mathrm{VAC}, \cos \varphi=0.3$
0.3 million ops. at $3 \mathrm{~A} / 250 \mathrm{VAC}, \cos \varphi=0.3$	
	0.5 million ops. at $6 \mathrm{~A} / 24 \mathrm{VDC}$, resistive
2 million ops. at $4 \mathrm{~A} / 24 \mathrm{VDC}$, resistive	
	2 million ops. at $0.2 \mathrm{~A} / 230 \mathrm{VDC}$, resistive
	1 million ops. at $0.4 \mathrm{~A} / 24 \mathrm{VDC}, \mathrm{L} / \mathrm{R}=20 \mathrm{~ms}$
	1 million ops. at $0.2 \mathrm{~A} / 110 \mathrm{VDC}, \mathrm{L} / \mathrm{R}=20 \mathrm{~ms}$
	1 million ops. at $0.1 \mathrm{~A} / 230 \mathrm{VDC}, \mathrm{L} / \mathrm{R}=20 \mathrm{~ms}$
Life expectancy (mechanical)	30 million operations


General Data Insulation Characteristics	$2 \mathrm{kVAC} / 50 \mathrm{~Hz}$ test voltage according to VDE 0435 and 6 kV $1.2 / 50 \mu \mathrm{~s}$ surge voltage according to IEC $947-1$ between all inputs and outputs
EMC/Interference Immunity	Performance of following requirements:   - Surge capacity of the supply voltage according to IEC1000-4-5: $4 \mathrm{kV} 1.2 / 50 \mu \mathrm{~S}$   - Burst according to IEC 1000-4-4: $6 \mathrm{kV} / 6 / 50 \mathrm{~ns}$   - ESD discharge according to IEC 1000-4-2:   - Contact 8 kV, air 8 kV   - Electromagnetic HF field according to IEC 801-3 and conducted electromagnetic HF signal according to IEC 801-6: Level 3
EMC/Emission	Electromagnetic fields according to EN 55 022: Class B
Safe isolation	According to VDE 106, part 101
Climatic withstand	56 cycles ( 24 h ) at $25 \ldots 40^{\circ} \mathrm{C}$ and $95 \%$ relative humidity according to IEC 68-2-30 and IEC 68-2-3.
Vibration resistance	4 g in 3 axis at $10 \ldots 500 \mathrm{~Hz}$, test FC according to IEC 68-2-6
Shock resistance	50 g according to IEC 68-2-27
Protection class	
Weight	100 g
Approvals/Standards	UL File E14840, C-UL up to 240VAC, CE
Ambient temperature	Open: $-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$   Enclosed: $-25^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$   Storage $-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Connections Screw   terminal -   Rated tightening torque -     Wire Size -	M3.5 for Pozidrive No.2, Phillips and slotted screws No. 2 suitable for power screwdriver.   0.8 Nm (max. 1.2 Nm ) - [ $8.8 \mathrm{lb}-\mathrm{in}$ ]   Dual-chamber system for terminal cross-sections of 1 x $0.5 \mathrm{~mm}^{2}$ (solid) or $2 \times 2.5 \mathrm{~mm}^{2}$ (flexible with sleeve), AWG 20... 14 .
Finger Protection -	According to VDE 0106
Mounting	Can be panel or DIN rail mounted. For best performance allow at least 5 mm (0.2in.) of space on each side for proper ventilation.   - Snap-on mounting (35mm DIN-rail)   - Side mounting on CA7contactors and CS7 with dovetail joint [surface mounting in any position]   - Screw fixing by Panel Mount Adapter and two screws (M4) [surface mounting in any position]
Disposal	Synthetic material without dioxin according to EC/EFTA notification No. 93/0141/D. Electrical contacts contain cadmium.
Standards	$\begin{aligned} & \text { EN 60947-1, EN 60947-5-1, EN 50081-1, IEC 947, UL } 508 . \\ & \text { CSA } 22.2 \text { No. } 14 \end{aligned}$

## RZ7 Relative Scale Setting Knob

Series RZ7 Timing Relays have a "relative scale" setting knob numbered 0 to 1.0. Think about this as 0 to $100 \%$ of the relay's built-in time range. Example: To set an RZ7-FS timing relay (with a 0.05 to 1 minute range) to activate after 25 seconds:

1) Divide the desired activation time ( 25 seconds) by the maximum time limit of the relay ( 60 seconds).
$25 \div 60=.416$
2) Rotate the setting knob to just past the .4 mark.
 Technical Information Series RZ7-FE Electronic Timing Relays

## Technical Data


Technical Data (continued)


## RZ7 Relative Scale Setting Knob

Series RZ7 Timing Relays have a "relative scale" setting knob numbered 0 to 1.0. Think about this as 0 to $100 \%$ of the relay's built-in time range.
Example: To set an RZ7-FE timing relay (with a to activate after 25 seconds:

1) Divide the desired activation time ( 25 seconds) by the maximum time limit of the relay
(60 seconds).
$25 \div 60=.416$
2) Rotate the setting knob to just past the .4 mark

Series RZ7-FS Timing Relays (one and two pole)
Dimensions are in millimeters (inches). Dimensions not intended for manufacturing purposes.


RZ7-FS (1 SPDT contact)


RZ7-FS (2 SPDT contacts)

Panel Mount Adaptor (RZ7-FSA)


## Series RZ7-FE Timing Relays (one and two pole)

Dimensions are in inches (millimeters). Dimensions not intended for manufacturing purposes.


Panel Mount Adaptor (26.506.221-01)


## General Purpose Relays R2N/R4N Miniature Power Plug-in Relays



R4N Miniature Blade Type Relay



The Relpol R2N and R4N General Purpose Miniature Power Relays, typically called "miniature cube type" in the industry, offer high reliability and ruggedness without sacrificing the convenience and economy users have come to expect from relays in this size class. This line of plug-in devices is well suited to any application where a dependable low cost control relay is required.

## Versatile design for any application

The R2N miniature power relay is rated at 12 amps resistive @ 240 VAC and is available in a 2PDT ( 2 form-C contacts) contact arrangement. The R4N relay is rated at 6 amps resistive @240VAC and available in a 4PDT (4 form-C contacts) contact design.

The relay contact materials are cadmium-free and are made of highly reliable silver nickel $(\mathrm{AgNi})$ which can perform to currents as low as $5 \mathrm{~mA} @ 5 \mathrm{~V}$. For lower level signal applications, the R 4 N is also available with silver nickel gold plated contacts for circuits 2 mA .

Each relay style is available in ten coil voltages from 6 V DC to 110 V DC and 6 V AC to 240 V AC.

## Extremely rugged and reliable

The R2N and R4N relays provides long lasting high quality contact reliability even after millions of operations, due to their hard silver contacts with a mechanical life of 20 million cycles, and high contact switching capacity.

## Convenient features

All R Series miniature power relay features a mechanical "flag" and a one piece "push-to--test button/latching" lever. The "push-to--test" button permits a momentary testing of the relay contacts. The "latching" lever allows the relay contacts to remain closed for longer testing periods until released back to normal.

These standard features save time and labor when troubleshooting control circuitry.

A LED position indicator that shows whether the relay is energized and that the contacts have changed over is available as standard. All relays with DC coils are bi-polar, which means polarity input can either be $+/$ or $-/+$ to energize the coil.

## DIN-rail mounted relay sockets

The GZT relay sockets offer a unique look in an IEC slim design style. The sockets can be DIN-mounted or screwed directly onto the panel. The socket terminals are fully opened and pin numbers are clearly identified. The relays are easily secured and fastened to the relay sockets. For high vibration applications, optional retainer clips are available to firmly hold the relays to the socket base.

## Safety Approvals

The R2N and R4N are UL recognized, CSA certified, VDE certified and CE marked which meets the requirements of all important international approval organizations, making them ideal for use in both domestic and export equipment.


R4N relay and GZT4 socket with GZT4-0040 retainer clip

## Interface PCB

Relays PI84/P185


RM84 Interface PCB Relay used in Pl84 complete assembly

RM85 Interface PCB Relay used in PI85 complete assembly
$\left.{ }^{-10}\right)_{u s}$


The Relpol PI84/PI85 Interface PCB Relays offer a unique design for high current applications. The low current input and power consumption with load capabilities of high current switching is ideal for limited input sources and panel space savings.

## A full featured model in one small package

The PI84/PI85 interface PCB relays are offered as a complete package which includes the following five factory installed pieces:

1. PCB (Printed Circuit Board module)
2. Relay socket
3. LED position indicator
4. Retainer clip
5. Description plate

## Low input current, high switching capabilities

The PI84 interface PCB relays is rated at 8 amps resistive @250VAC and is available in a 2PDT ( 2 form-C contacts). The PI85 is rated at 16 amps resistive @ 250 VAC and is available in a SPDT ( 1 form-C contact). The coil power consumption is approximately 750 mA AC or 480 mW DC.

Both interface relay styles are available in 24 V DC, 24 V AC and 120 V AC models.

## Rugged and reliable

With a mechanical life of 20 million cycles, and high contact switching capacity due to their hard nickel cadmium contacts, the PI84/PI85 interface PCB relays provide long lasting high quality contact reliability even after millions of operations.

## DIN-rail mounted relay sockets

The PI84/PI85 interface relay DIN-mounted sockets offer a slim space savings design. The relay socket includes a retainer clip to firmly hold the PCB relay and a description plate as standard.

## Safety Approvals

The RM84 \& RM85 interface PCB relays are UL recognized, CSA, VDE certified and CE marked which meets the requirements of all important international approval organizations, making them ideal for use in both domestic and export equipment.


P184 Interface PCB Relay
complete assembly

## Interface PCB Relays (Form C) - 2 Pole

P184 PCB Relay	Description	Position Indication	Coil Voltage	Discontinued	Catalog Number	$\begin{aligned} & \text { Pkg } \\ & \text { Qty } \end{aligned}$
	8A DPDT   2 Pole (2 Form C)   AgNi Contacts   Includes:   PCB relay, plug-in socket, protective module, retainer clip and description plate	Electrical LED	24VDC	PI84-24DC-M41G	PI84-024DC-M4IG-TS-2012	
			24 VAC	PI84-24AC-M91G	PI84-024AC-M91G-TS-2012	10
			120VAC	P184-120AC-M93G	PI84-120AC-M93G-TS-2012	

## Interface PCB Relays (Form C) - 1 Pole

P185 PCB Relay	Description	Position Indication	Coil Voltage	Discontinued	Catalog Number	Pkg Qty
	16A SPDT   1 Pole (1 Form C)	Electrical LED	24VDC	PI85-24DC-M41G	P185-024DC-M41G-TS-2011	10
	Includes:   PCB relay, plug-in		24 VAC	P185-24AC-M91G	PI85-024AC-M91G-TS-2011	
	module, retainer clip and description plate		120VAC	PI85-120AC-M93G	P185-120AC-M93G-TS-2011	

## Accessories

RM84/RM85	Description	For use with...	Catalog Number	Pkg Qty
RM85	Replacement PCB Relay Replacement operational relays for PI84/PI85 Interface PCB Relays	PI84-24DC-M41G	RM84-2012-25-1024	20
		PI84-24AC-M91G	RM84-2012-25-5024	
		PI84-120AC-M93G	RM84-2012-25-5120	
		PI85-24DC-M41G	RM85-2011-25-1024	
		PI85-24AC-M91G	RM85-2011-25-5024	20
		PI85-120AC-M93G	RM85-2011-25-5120	

## R15 Plug-in Power Relays Tube Base Style




R15 3PDT 11-Pin Relay


The Relpol R15 General Purpose Plug-in Power Relays offer high reliability and ruggedness in a full featured model design. This line of plug-in devices is well suited for the traditional tube base market. This is widely used in the industry where a dependable low cost control relay is required.

## Designed for traditional applications

The R15 plug-in power relay is rated at 10 amps resistive @250VAC and is available in a 2PDT ( 2 form-C contacts) and 3PDT (3 form-C contacts) contact arrangement. The two pole and three pole relays are housed in traditional 8 pin and 11 pin designs.

The relay contact materials are cadmium-free and are made of highly reliable silver nickel $(\mathrm{AgNi})$ which can perform to currents as low as 5mA@5V. The R15 relays are available in ten coil voltages from 6 V DC to 110 V DC and 6 V AC to 240 V AC.

## Rugged and reliable

The R15 plug-in power relays provide long lasting high quality contact reliability even after millions of operations, due to their hard silver contacts with a mechanical life of 20 million cycles, and high contact switching capacity.

## Convenient features

All R15 plug-in power relays feature a mechanical "flag" and a one piece "push-to-test button/latching" lever. The "push-to-test" button permits a momentary testing of the relay contacts. The "latching" lever allows the relay contacts to remain closed for longer testing periods until released back to normal. These standard features save time and labor when troubleshooting control circuitry.

A LED position indicator shows whether the relay is energized and the contacts have changed over is available as standard.

## DIN-rail mounted relay sockets

The PZ relay sockets offer a unique look in an IEC slim design style. The sockets can be DIN-mounted or screwed directly onto the panel. The socket terminals are fully opened and pin numbers are clearly identified. The relays are easily secured and fastened to the relay sockets. For high vibration applications, optional retainer clips are available to firmly hold the relays to the socket base.

## Safety Approvals

The R15 plug-in power relays are UL recognized, CSA certified, VDE certified and CE marked which meets the requirements of all important international approval organizations, making them ideal for use in both domestic and export equipment.


R15 3PDT relay
and PZ11 socket

Plug-in Relays 2 Pole (Form C) - Tube Base 8-Pin Type 1

R15 Relay	Description	Position Indication	Diagram (pin side view)	Coil   Voltage	Catalog Number	$\begin{aligned} & \text { Pkg } \\ & \text { Qty } \\ & \hline \end{aligned}$
	10A DPDT   2 Pole (2 Form C)   AgNi Contacts	Indicating Flag   Electrical LED	DPDT	6VDC	R15-2012-23-1006-WTL	10
				12VDC	R15-2012-23-1012-WTL	
				24VDC	R15-2012-23-1024-WTL	
				48VDC	R15-2012-23-1048-WTL	
	Features:			110VDC	R15-2012-23-1110-WTL	
	Push-to-test/			6VAC	R15-2012-23-5006-WTL	
	Latching Lever as			12VAC	R15-2012-23-5012-WTL	
	standard			24 VAC	R15-2012-23-5024-WTL	
				120VAC	R15-2012-23-5120-WTL	
	versions			240VAC	R15-2012-23-5240-WTL	

## Plug-in Relays 3 Pole (Form C) - Tube Base 11-Pin Type 1



[^1]
## Accessories

Accessory	Description	Catalog Number	Pkg Qty
	Screw Terminal, Relpol Tube Base 8-PIN Socket for R15 relays   - Panel or DIN-rail mounting   $-10 \mathrm{~A}, 250 \mathrm{~V}$ rating, UR, CSA	PZ8	

## Accessories

Accessory	Description	Catalog Number	Pkg Qty
	P-Type button (push-to-test button) See application details below.   For R15 Relays with AC Coils (orange button) For R15 Relays with DC Coils (green button)	$\begin{aligned} & \text { R15-M404-A } \\ & \text { R15-M404-D } \end{aligned}$	100
	Relay hole plug. Plugs the hole when the T or P type inserts © are removed. See installation details below.   For R15 Relays with AC Coils (orange button) For R15 Relays with DC Coils (green button)	$\begin{aligned} & \text { R15-M203-A } \\ & \text { R15-M203-D } \end{aligned}$	100

## Plug \& P-type button (Push-to-test) for R15 Relays

The R15 relays are equipped with a one-piece " $T$ " insert that functions either as Push-to-test button or Latching of the relay contacts as standard. The " T " insert can be easily removed and replaced with an accessory Plug for applications that can not include these additional standard features.

The accessory P-Type button (Push-to-test) is recommended for applications that only require manual contact closure for control circuit testing. By manually pressing the P-Type button, the relay contacts change state for as long as the P -Type button is pressed. Contacts return to the initial position as soon as pressure is released from the P-Type button. This operation can be done while the coil is de-energized. The standard " $T$ " insert can be easily removed and replaced with a P-Type button as shown.


Remove the standard "T" plastic insert with a small screwdriver as shown

Insert the P-Type button or Plug as shown and snap down into place

## RUC Plug-in Power Relays Square Base Plug-in



RUC 3PDT Blade Type relay ${ }_{c} \mathrm{NH}_{\text {us }}$


C

The Relpol RUC General Purpose Plug-in Power Relays offer high reliability and robustness in a traditional square base design. This line of plug-in devices is well suited for the traditional higher inrush current applications.

## Designed for higher amps and inrush applications

The RUC plug-in power relay is rated at 15 amps resistive @250VAC and is available in a 2PDT ( 2 form-C contacts). It is also available in a 3PDT ( 3 form-C contacts) contact arrangement rated at 10 amps resistive @250VAC. These relays can handle inrush currents up to 40 amps .

The relay contact materials are made of highly reliable silver tin $(\mathrm{AgSnO} 2)$ which has a minimum switching capacity of 10 mA $@ 10 \mathrm{~V}$. The RUC relays are available in ten coil voltages from 6 V DC to 110 V DC and 6 V AC to 240 V AC.

## Rugged and reliable

The RUC plug-in power relays provide long lasting high quality contact reliability even after millions of operations due to their hard nickel cadmium contacts, with a mechanical life of 20 million cycles, and high contact switching capacity.

## Convenient features

The RUC plug-in power relay offers a LED position indicator that shows whether the relay is energized and that the contacts have changed over.

## DIN-rail mounted relay sockets

The SB11 relay sockets offer a traditional look in an IEC design. The sockets can be DIN-mounted or screwed directly onto the panel. The terminal pin numbers are clearly identified. The relays are easily secured and fastened to the relay sockets. For high vibration applications, optional retainer clips are available to firmly hold the relays to the socket base.

## Safety Approvals

The RUC plug-in power relays are UL recognized, CSA certified and CE marked which meets the requirements of all important international approval organizations, making them ideal for use in both domestic and export equipment.


RUC 3PDT relay and SB11 socket

## Plug-in Relays 2 Pole (Form C) - Square Base Blade Type 1

RUC Relay	Description	Position Indication	Diagram (pin side view)	Coil Voltage	Discontinued	Catalog Number	Pkg Qty
	15A DPDT   2 Pole (2 Form C)   AgSnO2   Contacts   Features:   Built-in LED   Bi-polar input for DC versions	Indicating   Flag   Electrical   LED	DPDT	6VDC	RUC-1012-26-1006-L	RUC-3012-26-1006-L	10
				12VDC	RUC-1012-26-1012-L	RUC-3012-26-1012-L	
				24VDC	RUC-1012-26-1024-L	RUC-3012-26-1024-L	
				48VDC	RUC-1012-26-1048-L	RUC-3012-26-1048-L	
				110VDC	RUC-1012-26-1110-L	RUC-3012-26-1110-L	
				6VAC	RUC-1012-26-5006-L	RUC-3012-26-5006-L	
				12 VAC	RUC-1012-26-5012-L	RUC-3012-26-5012-L	
				24 VAC	RUC-1012-26-5024-L	RUC-3012-26-5024-L	
				120VAC	RUC-1012-26-5120-L	RUC-3012-26-5120-L	
				240VAC	RUC-1012-26-5240-L	RUC-3012-26-5240-L	

Plug-in Relays 3 Pole (Form C) - Square Base Blade Type 1

RUC Relay	Description	Position Indication	Diagram (pin side view)	Coil Voltage	Discontinued	Catalog Number	Pkg Qty
	10A 3PDT   3 Pole (3 Form C)   AgSnO2   Contacts   Features:   Built-in LED   Bi-polar input for   DC versions	Indicating   Flag   Electrical   LED		6VDC	RUC-1013-26-1006-L	RUC-3013-26-1006-L	10
				12VDC	RUC-1013-26-1012-L	RUC-3013-26-1012-L	
				24VDC	RUC-1013-26-1024-L	RUC-3013-26-1024-L	
				48VDC	RUC-1013-26-1048-L	RUC-3013-26-1048-L	
				110VDC	RUC-1013-26-1110-L	RUC-3013-26-1110-L	
				6VAC	RUC-1013-26-5006-L	RUC-3013-26-5006-L	
				12 VAC	RUC-1013-26-5012-L	RUC-3013-26-5012-L	
				24VAC	RUC-1013-26-5024-L	RUC-3013-26-5024-L	
				120VAC	RUC-1013-26-5120-L	RUC-3013-26-5120-L	
				240VAC	RUC-1013-26-5240-L	RUC-3013-26-5240-L	

Accessories

Accessory	Description	Catalog Number	$\begin{aligned} & \text { Pkg } \\ & \text { Qty } \end{aligned}$
	Screw Terminal, Square Base Blade type Socket for RUC relays   - Panel or DIN-rail mounting (2)   - 15A, 300VAC rating, UR, CSA	SB11	10
	Retainer clip for SB11 tube base relay sockets	MBA	25
	DIN-rail - 2 meter lengths ( $6^{\prime} 6^{\prime \prime}$ )   Top Hat, Iow profile   Top Hat, high profile	$\begin{gathered} 3 F \\ 3 \mathrm{AF} \end{gathered}$	20 12

[^2]
## RY2 Plug-in Power Relays Slim Square

## Base



The Relpol RY2 General Purpose Plug-in Power Relay is a traditional square base blade type style designed for higher current application in a small design.

## Designed for higher amp applications in a reduced size

The RY2 plug-in power relay is rated at 12 amps resistive @250VAC and is available in a 2PDT ( 2 form-C contacts). These relays can handle inrush currents up to 20 amps in a small packaged design.

The relay contact materials are made of highly reliable silver nickel which has a minimum switching capacity of $5 \mathrm{~mA} @ 5 \mathrm{~V}$. The RY2 relays are available in ten coil voltages from 6 V DC to 110 V DC and 6 V AC to 240 V AC.

## Rugged and reliable

With a mechanical life of 20 million cycles, and high contact switching capacity due to their hard nickel cadmium contacts, the RY2 plug-in power relay provides long lasting high quality contact reliability even after millions of operations.

## Convenient features

All RY2 plug-in power relays feature a mechanical "flag" indicator and a LED position indicator that shows whether the relay is energized and that the contacts have changed over.


## DIN-rail mounted relay sockets

The SB08 relay sockets offer a slim space savings design. The sockets can be DIN--mounted or screwed directly onto the panel. The terminal pin numbers are clearly identified. The relays are easily secured and fastened to the relay sockets. For high vibration applications, optional retainer clips are available to firmly hold the relays to the socket base.

## Safety Approvals

The RY2 plug-in power relays are cURus recognized and CE marked which meets the requirements of all important international approval organizations, making them ideal for use in both domestic and export equipment.

Plug-in Relays 2 Pole (Form C) - Slim Blade Type

RY2 Relay	Description	Position Indication	Diagram (pin side view)	Coil Voltage	Catalog Number	$\begin{aligned} & \text { Pkg } \\ & \text { Qty } \\ & \hline \end{aligned}$
	12A DPDT   2 Pole (2 Form C)   AgNi Contact   Features:   Built-in LED   Bi-polar input for DC versions	Indicating Flag   Electrical LED	DPDT	6VDC	RY2-2012-26-1006-L	10
				12VDC	RY2-2012-26-1012-L	
				24VDC	RY2-2012-26-1024-L	
				48VDC	RY2-2012-26-1048-L	
				110VDC	RY2-2012-26-1110-L	
				6VAC	RY2-2012-26-5006-L	
				12 VAC	RY2-2012-26-5012-L	
				24VAC	RY2-2012-26-5024-L	
				120VAC	RY2-2012-26-5120-L	
				240VAC	RY2-2012-26-5240-L	

Accessories

Accessory	Description	Catalog Number	Pkg Qty
	Screw Terminal, Square Base Blade type Socket for RY2 relays   - Panel or DIN-rail mounting ©   - 15A, 300VAC rating, UR, CSA	SB08	10
$\sqrt{5}$	Retainer clip forGZY2 tube base relay sockets	SP-8	25
	DIN-rail - 2 meter lengths ( $6^{\prime} 6^{\prime \prime}$ )   Top Hat, low profile   Top Hat, high profile	$\begin{gathered} 3 F \\ 3 A F \end{gathered}$	$\begin{aligned} & 20 \\ & 12 \end{aligned}$

[^3]
## Interface PCB

Relays PI84/P185


RM84 Interface PCB Relay used in PI84 complete assembly


RM85 Interface PCB Relay used in PI85 complete assembly


The Relpol PI84/PI85 Interface PCB Relays offer a unique design for high current applications. The low current input and power consumption with load capabilities of high current switching is ideal for limited input sources and panel space savings.

## A full featured model in one small package

The PI84/PI85 interface PCB relays are offered as a complete package which includes the following five factory installed pieces:

1. PCB (Printed Circuit Board module)
2. Relay socket
3. LED position indicator
4. Retainer clip
5. Description plate

## Low input current, high switching capabilities

The PI84 interface PCB relays is rated at 8 amps resistive @250VAC and is available in a 2PDT ( 2 form-C contacts). The PI85 is rated at 16 amps resistive @ 250 VAC and is available in a SPDT (1 form-C contact). The coil power consumption is approximately 750 mA AC or 480 mW DC.

Both interface relay styles are available in 24 V DC, 24 V AC and 120 V AC models.

## Rugged and reliable

With a mechanical life of 20 million cycles, and high contact switching capacity due to their hard nickel cadmium contacts, the PI84/PI85 interface PCB relays provide long lasting high quality contact reliability even
after millions of operations.

## DIN-rail mounted relay sockets

The PI84/PI85 interface relay DIN-mounted sockets offer a slim space savings design. The relay socket includes a retainer clip to firmly hold the PCB relay and a description plate as standard.

## Safety Approvals

The RM84 \& RM85 interface PCB relays are UL recognized, CSA, VDE certified and CE marked which meets the requirements of all important international approval organizations, making them ideal for use in both domestic and export equipment.


PI84 Interface PCB Relay complete assembly

## Interface PCB Relays (Form C) - 2 Pole

P184 PCB Relay	Description	Position Indication	Coil Voltage	Catalog Number	$\begin{aligned} & \text { Pkg } \\ & \text { Qty } \end{aligned}$
	8A DPDT   2 Pole (2 Form C)   AgNi Contacts   Includes:   PCB relay, plug-in   socket, protective   module, retainer clip   and description plate	Electrical LED	24 VDC   24VAC   120VAC	PI84-24DC-M41G   PI84-24AC-M91G   PI84-120AC-M93G	10

## Interface PCB Relays (Form C) - 1 Pole

P185 PCB Relay	Description	Position Indication	$\begin{gathered} \hline \text { Coil } \\ \text { Voltage } \end{gathered}$	Catalog Number	$\begin{aligned} & \text { Pkg } \\ & \text { Qty } \end{aligned}$
	16A SPDT   1 Pole (1 Form C)   AgNi Contacts   Includes:   PCB relay, plug-in socket, protective module, retainer clip and description plate	Electrical LED	24VDC   24VAC   120VAC	PI85-24DC-M41G   PI85-24AC-M91G   PI85-120AC-M93G	10

## Accessories

RM84/RM85	Description		For use with...	Catalog Number

## PIR6W Slim Interface Terminal Block Relays



The Relpol PIR6W Slim Interface Terminal Block Relay is ideally compact, designed for a variety of high-density isolation and interposing applications.

## A full featured model in one small package

The PIR6W slim interface relays are offered as a complete package which includes the following:

- Changeover relay, rated load 6 A / 230 V (ACI)
- Interface Relay socket with built-in LED position indicator
- Description plate


## Low input current, high switching capabilities

The PIR6W slim interface relay contacts are rated at 6 amps resistive @230VAC and available in SPDT ( 1 form - C contact). The minimum contact current capablilties are 100 mA at 24 V . The coil power cosumption is approximately $0.3 \ldots 0 . .8 \mathrm{VA} \mathrm{AC}$ or $0.3 \ldots .0 .9 \mathrm{~W}$ DC. The PIR6W interface relays are available in 24 V DC, $24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$ and 120 V models.


PIR6W Slim Interface Relay Complete Assembly

## Rugged and reliable

With a mechanical life of 20 million cycles, and high contact switching capacity due to their silver tin oxide $\left(\mathrm{AgSnO}_{2}\right)$ contacts, the PIR6W interface relays provide long lasting high quality contact reliability even after millions of operations.

## DIN-rail mounted

The PIR6W slim interface relays are DIN-rail mountable which can be easily installed along side other control terminal blocks for a space saving design.

## Safety approvals

The PIR6W slim interface relays are cURus, VDE and CE marked which meets the requirements of all important international approval organizations, making them ideal for use in both domestic and export equipment.

## Interface Terminal Block Relays (1 Form C) - 1 Pole ©

PIR6W	Specifications	Input Voltage	Catalog Number	Pkg Qty
	$\begin{array}{llll}14 & 11 & 12\end{array}$	12VDC	PIR6W-1P-12VDC	10
	6A SPDT   1 Pole (1 Form C)   $\mathrm{AgSnO}_{2}$   Includes:   - Change over relay with built-in Green LED indicator	24VDC	PIR6W-1P-24VDC	
$\cdots$ -		24 V AC/DC	PIR6W-1P-24VAC/DC	
		115 V AC/DC	PIR6W-1P-115VAC/DC	

* Gray denotes special order.


## Accessories

Accessory	Description	For use with...	Catalog Number	Pkg Qty

© Other input voltages available as special order; contact your Sprecher + Schuh Representative.
(2) It should be noted that rated voltage Un of the input/operational relay coil does not always comply with the rated voltage Un of the interface relay (which is important on ordering operational relays for sockets).
© Previously accepted older model RM699V-3011-85-1012 12VDC replacement relay. Now supports a 24VDC relay model RM699BV-3011-85-1024.
(4) In March 2016, Relpol changed the DIN-rail fixing place location as represented in this view.

R2N/R4N Technical Information
Miniature plug-in power relays

## Technical Information

	R2N	R4N
Contacts		
Contact number \& arrangement	DPDT	4PDT
Contact material	AgNi	AgNi, AgNi/Au $5 \mu \mathrm{~m}$
Max. switching voltage AC/DC	$250 \mathrm{~V} / 250 \mathrm{~V}$	$250 \mathrm{~V} / 250 \mathrm{~V}$
Min. switching voltage	5 V	5 V
Rated load	$12 \mathrm{~A} / 250 \mathrm{~V}$ AC	$6 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC}$
	$3 \mathrm{~A} / 120 \mathrm{~V}$	$1.5 \mathrm{~A} / 120 \mathrm{~V}$
	$1.5 \mathrm{~A} / 240 \mathrm{~V}$ (B300)	$0.75 \mathrm{~A} / 240 \mathrm{~V}$ (C300)
	370 W (Single-phase motor)	125 W (Single-phase motor)
	$12 \mathrm{~A} / 24 \mathrm{VDC}$	$6 \mathrm{~A} / 24 \mathrm{~V}$ DC
	$0.22 \mathrm{~A} / 120 \mathrm{~V}$ DC	$0.22 \mathrm{~A} / 120 \mathrm{~V}$ DC
	$0.1 \mathrm{~A} / 250 \mathrm{~V}$ (R300)	$0.1 \mathrm{~A} / 250 \mathrm{~V}$ (R300)
Min. switching current	5 mA AgNi	$2 \mathrm{~mA} \mathrm{AgNi/Au} 5 \mu \mathrm{~m}$
Max. inrush current	24 A	12 A
Rated current	12 A	6 A
Max. breaking capacity AC1	3000 VA	1500 VA
Min. breaking capacity	0,3 W AgNi	0,3 W AgNi, 0,1 W AgNi/Au $5 \mu \mathrm{~m}$
Resistance	$\leq 100 \mathrm{~m} \Omega$	
Max. operating frequency   - at rated load   - no load	1200 cycles/hour   18000 cycles/hour	
General data   Operating time (typical value)		
Release time (typical value)	AC: 10 ms DC: 13 ms	
Electrical life   - resistive AC1   - $\cos \phi$	$\geq 10^{5} 12 \mathrm{~A}, 250 \mathrm{VAC}$	$\geq 10^{5} 6 \mathrm{~A}, 250 \mathrm{VAC}$
Mechanical life (cycles)	$\geq 2 \times 10^{7}$	
Dimensions ( $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ )	$27,5 \times 21,2 \times 35,6 \mathrm{~mm}$	
Weight	35 g	
Ambient temperature   - storing   - operating	$\begin{gathered} -40 \ldots+85^{\circ} \mathrm{C} \\ \text { AC: }-40 \ldots+55^{\circ} \mathrm{C} \quad \text { DC: }-40 \ldots+70^{\circ} \mathrm{C} \end{gathered}$	
Cover protection category	IP 40	
Shock resistance (NO/NC)	$10 \mathrm{~g} / 5 \mathrm{~g}$	
Vibration resistance	$5 \mathrm{~g} \mathrm{10...150} \mathrm{~Hz}$	
Solder bath temperature	max. $270{ }^{\circ} \mathrm{C}$	
Soldering time	max. 5 s	
Insulation Insulation category	C250	B250
Insulation rated voltage	250 V AC	
Dielectric strength   - coil - contact   - contact - contact   - pole - pole	$2,500 \mathrm{~V} \mathrm{AC}$	2,000 V AC
Contact - coil distance   - clearance   - creepage	$\begin{aligned} & \geq 2,5 \mathrm{~mm} \\ & \geq 4 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \geq 1,6 \mathrm{~mm} \\ & \geq 3,2 \mathrm{~mm} \\ & \hline \end{aligned}$


UL/CSA Ratings		
Contact Ratings, General Purpose	10 A 250 V AC	6A 250VAC
	12 A 150 V AC	
DC Rating		10 A 28 V DC
UL File Number	E105728	
CSA File Number	LR86957	
Standards		UL 508, CAN/CSA-C22.2 No. 14

## Technical Information

R2N			
Coil			R4N
Rated voltage	$50 / 60 \mathrm{~Hz} \mathrm{AC}$	$6 \ldots . .240 \mathrm{~V}$	
Contact material	DC	$6 \ldots 110 \mathrm{~V}$	
Must release voltage		AC: $\geq 0,2 \mathrm{U}_{\mathrm{n}} \mathrm{DC}: \geq 0,1 \mathrm{Un}$	
Operating range of supply voltage		see tables below	
Rated power consumption	AC	$1,6 \mathrm{VA}$	
	DC	$0,9 \mathrm{~W}$	

## Coil Data - AC 50/60 Hz voltage version

	Rated Voltage	Coil Resistence	Coil Operating Range V AC	
Coil Code	V AC	$\mathbf{( \mathbf { 1 0 \% } \% ) \text { at 20 }}{ }^{\circ} \mathbf{C}$	min. (at 20 ${ }^{\circ} \mathbf{C}$ )	max. (at 55 $\left.{ }^{\circ} \mathbf{C}\right)$
5006	6		4,8	6,6
5012	12		9,6	13,2
2024	24	158,0	19,2	26,4
5120	120	3770,0	96,0	132,0
5240	240	16800,0	192,0	264,0

Coil Data - DC voltage version

	Rated Voltage	Coil Resistence	Coil Operating Range V DC	
Coil Code	V DC	$\mathbf{\pm 1 0 \%}$ ) at 20 ${ }^{\circ} \mathbf{C}$	min. (at 20 ${ }^{\circ} \mathbf{C}$ )	max. (at 55 ${ }^{\circ} \mathbf{C}$ )
1006	6		4,8	6,6
1012	12		9,6	13,2
1024	24	640	19,2	26,4
1048	48	2600	38,4	52,8
1110	110	13600	88,0	121,0

R2N Connections Diagram (pin side view)


R4N-2014 Connections Diagram (pin side view)


R4N-2314 Connections Diagram (pin side view)


Note: Bi-polar input for DC versions

R4N

Electrical life at AC resistive load


Electrical life at AC resistive load


Electrical life reduction factor at AC inductive load

$\mathrm{N}_{\cos \varphi}=\mathrm{N} \times \mathrm{F}$

Maximum DC resistive load breaking capacity



Dimensions are in millimeters (inches). Dimensions not intended for manufacturing purposes.


## Technical Information



Technical Information

Coil	
Rated voltage	AC: $6 . .240 \mathrm{~V} 50 / 60 \mathrm{~Hz} \quad$ DC: $6 \ldots .110 \mathrm{~V}$
Must release voltage	AC: $\geq 0,15 \mathrm{U}_{n} \quad$ DC: $\geq 0,1 \mathrm{U}_{n}$
Operating range of supply voltage	See coil data tables below
Rated power consumption	AC: $2,8 \mathrm{VA} 50 \mathrm{~Hz} 2,5 \mathrm{VA} 60 \mathrm{~Hz} \quad \mathrm{DC:} 1,5 \mathrm{~W}$

Coil Data - AC $50 / 60 \mathrm{~Hz}$ voltage version

Rated Voltage			Coil Operating Range V AC		
Coil Code	V AC	$\mathbf{( 1 0 \%}$ ) at 20 ${ }^{\circ} \mathbf{C} \Omega$	min. (at 20 ${ }^{\circ} \mathbf{C}$ )	max. (at 55 ${ }^{\circ} \mathbf{C}$ )	
5006	6	4,3	4,8	6,6	
5012	12	18,5	9,6	13,2	
2024	24	75,0	19,2	26,4	
5120	120	1910,0	96,0	132,0	
5240	240	7760,0	192,0	264,0	

## Coil Data - DC voltage version

Coil Code	Rated VoltageVDC	$\begin{gathered} \text { Coil Resistence } \\ ( \pm 10 \%) \text { at } 20^{\circ} \mathrm{C} \Omega \end{gathered}$	Coil Operating Range V DC	
			min. (at $20^{\circ} \mathrm{C}$ )	max. (at $55^{\circ} \mathrm{C}$ )
1006	6	28	4,8	6,6
1012	12	110	9,6	13,2
1024	24	430	19,2	26,4
1048	48	1750	38,4	52,8
1110	110	9200	88,0	121,0

R15 8-Pin Connection Diagram
(pin side view)


DPDT

R15 11-Pin Connection Diagram
(pin side view)


3PDT


Electrical life reduction factor at AC inductive load

$\mathrm{N}_{\cos \varphi}=\mathrm{NxF}$

R15 Dimensions
Plug-in power relays

Dimensions are in millimeters (inches). Dimensions not intended for manufacturing purposes.


## Technical Information

Contacts	RUC
Contact number \& arrangement	DPDT, 3PDT
Contact material	AgSnO2
Max. switching voltage	250 V
Min. switching voltage	10 V
Rated load	AC1
	DC1



## Coil Data - AC $50 / 60 \mathrm{~Hz}$ voltage version

	Rated Voltage	Coil Resistence	Coil Operating Range V AC	
Coil Code			min. (at 20 ${ }^{\circ} \mathbf{C}$ )	max. (at 55 ${ }^{\circ} \mathbf{C}$ )
5006	6	4,3	4,8	6,6
5012	12	18,5	9,6	13,2
2024	24	75,0	19,2	26,4
5120	120	1910	96,0	132,0
5240	240	7760	192,0	264,0

Coil Data - DC voltage version

Rated Voltage	Coil Resistence	Coil Operating Range V DC		
Coil Code		$\mathbf{\pm 1 0 \%}$ ) at $\mathbf{2 0}^{\circ} \mathbf{C} \Omega$	min. (at 20 ${ }^{\circ} \mathbf{C}$ )	max. (at 55 ${ }^{\circ} \mathbf{C}$ )
1006	6	28	4,8	6,6
1012	12	110	9,6	13,2
1024	24	430	19,2	26,4
1048	48	1750	38,4	52,8
1110	110	9200	88,0	121,0


RUC DPDT Connection Diagram

Dimensions are in millimeters (inches). Dimensions not intended for manufacturing purposes.


## Technical Information

## RY2



## Technical Information

## RY2

Coil		
Rated voltage	$50 / 60 \mathrm{~Hz} \mathrm{AC}$	$6 . .240 \mathrm{~V}$
	DC	$6 \ldots . .110 \mathrm{~V}$
Must release voltage		AC: $\geq 0,2 \mathrm{U}_{\mathrm{n}} \quad$ DC: $0,1 \mathrm{U}_{\mathrm{n}}$
Operating range of supply voltage		see coil data tables below
Rated power consumption	AC	$1,6 \mathrm{VA}$
	DC	$0,9 \mathrm{~W}$

## Coil Data - AC 50/60 Hz voltage version

Coil Code	Rated VoltageV AC	$\begin{gathered} \text { Coil Resistence } \\ ( \pm 10 \%) \text { at } 20^{\circ} \mathrm{C} \Omega \end{gathered}$	Coil Operating Range V AC	
			min. (at $20^{\circ} \mathrm{C}$ )	max. (at $55^{\circ} \mathrm{C}$ )
5006	6	9,8	4,8	6,6
5012	12	39,5	9,6	13,2
2024	24	158,0	19,2	26,4
5120	120	3770,0	96,0	132,0
5240	240	16800,0	192,0	264,0

Coil Data - DC voltage version

	Rated Voltage	Coil Resistence	Coil Operating Range V DC	
Coil Code			min. (at 20 ${ }^{\circ} \mathbf{C}$ )	max. (at 55 ${ }^{\circ} \mathbf{C}$ )
1006	6	40	4,0	5,5
1012	12	160	9,6	13,2
1024	24	640	19,2	26,4
1048	48	2600	38,4	52,8
1110	110	13600	88,0	121,0

RY2 Connection Diagram
(pin side view)


DPDT

Note: Bi-polar input for DC versions

## RY2 Technical Information

Plug-in Power Relays

Electric life at AC resistive load


Electrical life reduction factor at AC inductive load

$\mathrm{N}_{\mathrm{cos} \varphi}=\mathrm{NxF}$

Dimensions

RY2 Relay	SB08 Socket
$=\sqrt{111}+1 \times 1$	

## Technical Information



## Technical Information

PI84
PI85

	PI84		PI85
Coil			$24-120 \mathrm{~V}$
Rated voltage	$50 / 60 \mathrm{~Hz} \mathrm{AC}$		
	DC	24 V	
Must release voltage		AC: $\geq 0,15 \mathrm{U} \quad \mathrm{DC:} 0,1 \mathrm{Un}$	
Operating range of supply voltage		see Table 1, 2 and Fig. 4, 5	
Rated power consumption	AC	$0,75 \mathrm{VA}$	
	DC	$0,4 \ldots 0,48 \mathrm{~W}$	

Coil Data - AC 50/60 Hz voltage version

Coil Code	Rated Voltage V AC	Coil Resistence$( \pm 10 \%) \text { at } 20^{\circ} \mathrm{C}$	Coil Operating Range V AC	
			min. (at $20^{\circ} \mathrm{C}$ )	max. (at $55^{\circ} \mathrm{C}$ )
24AC	24	400	19,2	26,4
120AC	120	10200	96,0	144,0

Coil Data - DC voltage version

Coil Code	Rated Voltage V DC	Coil Resistence $( \pm 10 \%)$ at $20^{\circ} \mathrm{C}$	Coil Operating Range V DC	
			min. (at $20^{\circ} \mathrm{C}$ )	max. (at $55^{\circ} \mathrm{C}$ )
24DC	24	1440	16,8	61,2

PI84 Connection Diagram
(pin side view)

P185 Connection Diagram
(pin side view)

## $16 \mathrm{~A}, 300 \mathrm{~V}$ AC



SPDT



Note: Loads above 12 A require bridging pairs of terminals: 11 with 21,12 with 22 , 14 with 24 . Loads up to 12 A do not require bridging of common terminals (such bridges may be fixed, however)


DPDT

12 A, 300 V AC


SPDT

Electrical life at AC resistive load


Max. DC resistive load breaking capacity


Coil operating range - AC


Electrical life reduction factor at AC inductive load

$\mathrm{N}_{\cos \varphi}=\mathrm{N} \times \mathrm{F}$

Coil operating range - DC


Electrical life at AC resistive load


Electrical life reduction factor at AC inductive load

$N_{\cos \varphi}=N \times F$

Max. DC resistive load breaking capacity


Coil operating range - DC


Coil operating range - AC


Dimensions are in millimeters (inches). Dimensions not intended for manufacturing purposes.

## P184/P185 Interface Relay and Socket



RM84/RM85 Replacement Relay

RM84


RM85


1C/0
1 NO

Terminal (pin)	A1(1); A2(2)	$22(3) ; 21(4) ; 24(5) ;$   $12(6) ; 11(7) ; 14(8)$	
mm	$\phi 0,6$	$0,5 \times 0,9$	
Drilling hole	for relays   for sockets $\phi 1,3 \mathrm{~mm} \pm 0,1$	$\mathrm{~mm} \pm 0,1$	

## Contacts



[^4]
## Input Data

Relay code	Nominal input voltage $U_{n}$	Input power control circuit $\left(U_{n}\right)$	Input - voltage range   V	
			min.	max.
PIR6W-1P-12VDC	12 V DC	0,3 W	9,6	14,14
PIR6W-1P-24VDC	24 V DC	0,3 W	19,2	28,0
PIR6W-1P-24VAC/DC	$24 \mathrm{~V} \mathrm{AC/DC}$	0,3 VA / 0,3 W	19,2	26,4
PIR6W-1P-115VAC/DC	115 V DC	0,9 VA / 0,9 W	92,0	130,0

## Connection Diagrams

PIR6W-1P-12VDC
PIR6W-1P-24VDC


PIR6W-1P-115VAC/DC


## Mounting

Relays PIR6W are designed for 35 mm DIN rail mount, EN 50022.
PIR6W are adapted for the co-operation with interconnection strip type ZG20. Interconnection strip ZG20 allows to common bridging outputs or inputs. Maximum current rate is 36 A . Colors of strips: ZG20-1 red, ZG20-2 black, ZG20-3 blue.

## Dimensions

Dimensions are in millimeters (inches). Dimensions not intended for manufacturing purposes. (1)



Interconnection Strip ZG20


Description Plate PI6W-1246


Location of the description plate

Electrical life at AC resistive load. Maximum switching frequency at rated load


Max. DC resistive load breaking capacity


1 - resistive load DC1
2 - resistive load AC1

Coil Operating Range - DC


## RM699 Interface Operational Relay

 DimensionsDimensions are in millimeters (inches). Dimensions not intended for manufacturing purposes.



Description of Coil Operating Range
A - relations between make voltage and ambient temperature at no load on contacts. Coil temperature and ambient temperature are equal before coil energizing. Make voltage is not higher than the value read on Y axis (multiplication of rated voltage).
B - relations between make voltage and ambient temperature after initial coil heating up with $1,1 \mathrm{Un}$, at continues load of In on contacts. Make voltage is not higher than the value read on Y axis (multiplication of rated voltage).
1, 2,3 - values on $Y$ axis represent allowed overvoltage on coil at certain ambient temperature and contact load:
1-no load
2 - rated load

With over forty years of experience, Gefran is the world leader in the design and production of solutions for measuring, controlling, and driving industrial production processes. Gefran's knowhow and experience guarantee continuity and tangible solutions. Gefran's line of solid state relays are the ideal solution for applications where high speed switching and long life are essential. In specific applications, solid state relays offer many advantages over electromechanical devices including no moving parts or contact arcing. In addition, solid state relays are directly compatible with logic components such as microprocessors and PLCs.

Common Applications
Heating controls
Injection molding machines
Semiconductor manufacturing equipment
Glass processing
Welding controls
Food processing
Industrial \& commercial ovens
Soldering machines
Medical equipment
Office machinery
Robotics

## Broad selection for many applications

The Gefran GQ solid state relays are available in single phase "hockey puck" models up to 90 amps and the GTS DIN-rail single phase units with integral heatsink up to 120 amps . The GTZ three phase models with integral heatsink up to 55 amps are also available.

## Opto-isolated input limits current leakage

All Gefran solid state relays feature opto-isolated inputs where an internal LED signals a photosensitive element when output switching is to occur. This provides up to $4,000 \mathrm{~V}$ isolation between the input voltage and the output voltage and also limits current leakage. This

feature is important in certain medical, residential and industrial applications. The Gefran solid state relays also include built-in metal oxide varistor (MOV) protection to protect against internal damage to the solid state relay.

## Output Circuit Features

The Gefran solid state relays feature zero voltage turn-on, which means they are designed to turn on at the next zero crossover after application of the control voltage. This limits electromagnetic interference, reducing the chance of damage to downstream equipment. A built-in MOV reduces the likelihood of damage to the relay from rapid changes in voltage (dv/dt) and transient voltages.

## Many safety and convenience features

All Gefran solid state relays come standard with an LED to indicate when the relay is in an operational state. This increases safety and speeds troubleshooting.

In addition, all GQ hockey puck type relays come standard with a load side cover that provides touch protection. The GTS DIN-Rail mounted relays also offer touch protection through the use of a removable protective cover plate.

## Integral heatsink with <br> DIN-rail mounting

A complete selection of solid state relays are available with a built-in heatsink (GTS/GTZ models). This eliminates the hassle of selecting and installing a properly sized heatsink, or mounting to a panel mount relay directly on the back pan with silicone thermoconductive grease.

## Approvals

The Series GQ and GTZ solid state relays are cURus approved and CE marked. The GTZ DIN-rail solid state relays are cULus Listed and CE marked.
(1) Finger Safe Protection Covers
(2) AC or DC Input Connections
(3) AC Output Connection Models
(4) LED Status Indicator
© Internal MOV protection
© Integrated or optional heatsinks
© cURus, CE
(8) cULus, CE

Catalog Number Quick Guide

C0		15		4		D	1		4
	Nominal Current		Nominal Voltage		Control Voltage		Overvoltage	Connectors	
Hockey Puck	15	15A AC	24	230 V AC	D	3...32V DC	1 Internal	4	Two-pin screw
1-Phase	25	25A AC	60	600 V AC	A	20...260V AC	protection		connector, low
Panel Mount	50 90	$\begin{aligned} & 50 \mathrm{~A} A C \\ & 90 \mathrm{~A} \mathrm{AC} \end{aligned}$							profile enclosed



	40	$60=1$	0	YEI-91
	Nominal Current	Nominal Voltage Control Valtage	Alarm Output	Fan
3-Phase DIN Rail mount	25 25A AC	DSEONTINUED	0 None	VEN-90 230V 14W
	40 40A AC			$80 \times 80 \times 40$
	55 55A AC			VEN-91 115V 14W
				$80 \times 80 \times 40$
				Required on 40A \& 55A models only

1 Pole Panel Mount Relay, 3-32V DC Control, 230V AC Output resus $C \epsilon$

Specifications	15 Amp	25 Amp	50 Amp	90 Amp
	Catalog Number	Catalog Number	Catalog Number	Catalog Number
	GQ-15-24-D-1-4	GQ-25-24-D-1-4	GQ-50-24-D-1-4	GQ-90-24-D-1-4
Input   Voltage Range   Turn-on Voltage (min.)   Turn-off Voltage (max.)   Consumption   Reverse Voltage	$\begin{gathered} 3-32 \mathrm{~V} \mathrm{DC} \\ \geq 2.7 \mathrm{~V} \mathrm{DC} \\ \leq 1 \mathrm{~V} \mathrm{DC} \\ \leq 13 \mathrm{~mA} @ 32 \mathrm{~V} \\ <36 \mathrm{~V} \mathrm{DC} \\ \hline \end{gathered}$	$\begin{gathered} 3-32 \mathrm{~V} \mathrm{DC} \\ \geq 2.7 \mathrm{~V} \mathrm{DC} \\ \leq 1 \mathrm{VDC} \\ \leq 13 \mathrm{~mA} @ 32 \mathrm{~V} \\ <36 \mathrm{~V} \mathrm{DC} \\ \hline \end{gathered}$	$\begin{gathered} 3-32 \mathrm{VDC} \\ \geq 2.7 \mathrm{VDC} \\ \leq 1 \mathrm{VDC} \\ \leq 13 \mathrm{~mA} @ 32 \mathrm{~V} \\ <36 \mathrm{~V} \mathrm{DC} \\ \hline \end{gathered}$	$\begin{gathered} 3-32 \mathrm{VDC} \\ \geq 2.7 \mathrm{VDC} \\ \leq 1 \mathrm{VDC} \\ \leq 13 \mathrm{~mA} @ 32 \mathrm{~V} \\ <36 \mathrm{~V} \mathrm{DC} \\ \hline \end{gathered}$
Output   Amp Rating AC51   Nominal Voltage   Maximum Voltage   Zero Switching Voltage   Frequency Range	$\begin{gathered} 15 \\ 24 \ldots 230 \mathrm{VAC} \\ 20 \ldots 253 \mathrm{VAC} \\ \leq 20 \mathrm{~V} \\ 45 \ldots 65 \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 24 \ldots 230 \mathrm{VAC} \\ 20 \ldots 253 \mathrm{VAC} \\ \leq 20 \mathrm{~V} \\ 45 \ldots 65 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 50 \\ 24 \ldots 230 \mathrm{~V} \text { AC } \\ 20 \ldots 253 \mathrm{VAC} \\ \leq 20 \mathrm{~V} \\ 45 \ldots 65 \mathrm{~Hz} \end{gathered}$	90   24...230V AC   20...253V AC   $\leq 20 \mathrm{~V}$   45... 65 Hz
Dimension (mm)	58 (H) $\times 45$ (W) $\times 30.5$ (D), from base to top of control terminal 45 (D)			

1 Pole Panel Mount Relay, 20-260V AC Control, 230V AC Output ${ }^{\boldsymbol{q}} \mathrm{TN}_{\text {us }}$ ( $\epsilon$

Specifications	15 Amp	25 Amp	50 Amp	90 Amp
	Catalog Number	Catalog Number	Catalog Number	Catalog Number
	GQ-15-24-A-1-4	GQ-25-24-A-1-4	GQ-50-24-A-1-4	GQ-90-24-A-1-4
Input   Voltage Range   Turn-on Voltage (min.)   Turn-off Voltage (max.)   Consumption	$\begin{gathered} 20 \ldots 260 \mathrm{~V} \mathrm{AC} \\ \geq 15 \mathrm{~V} \mathrm{AC} \\ \leq 6 \mathrm{~V} \mathrm{AC} \\ \leq 8 \mathrm{~mA} @ 260 \mathrm{~V} \mathrm{AC} \end{gathered}$	$\begin{gathered} 20 \ldots 260 \mathrm{VAC} \\ \geq 15 \mathrm{~V} \mathrm{AC} \\ \leq 6 \mathrm{VAC} \\ \leq 8 \mathrm{~mA} @ 260 \mathrm{~V} \mathrm{AC} \end{gathered}$	$\begin{gathered} 20 \ldots 260 \mathrm{~V} \mathrm{AC} \\ \geq 15 \mathrm{VAC} \\ \leq 6 \mathrm{~V} \mathrm{AC} \\ \leq 8 \mathrm{~mA} @ 260 \mathrm{~V} \mathrm{AC} \end{gathered}$	$\begin{gathered} 20 \ldots 260 \mathrm{VAC} \\ \geq 15 \mathrm{~V} \mathrm{AC} \\ \leq 6 \mathrm{~V} \mathrm{AC} \\ \leq 8 \mathrm{~mA} @ 260 \mathrm{~V} \mathrm{AC} \end{gathered}$
Output   Amp Rating AC51   Nominal Voltage   Maximum Voltage   Zero Switching Voltage   Frequency Range	$\begin{gathered} 15 \\ 24 \ldots 230 \mathrm{VAC} \\ 20 \ldots 253 \mathrm{VAC} \\ \leq 20 \mathrm{~V} \\ 45 \ldots 65 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 25 \\ 24 \ldots 230 \mathrm{VAC} \\ 20 \ldots 253 \mathrm{VAC} \\ \leq 20 \mathrm{~V} \\ 45 \ldots 65 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 50 \\ 24 \ldots 230 \mathrm{VAC} \\ 20 \ldots 253 \mathrm{VAC} \\ \leq 20 \mathrm{~V} \\ 45 \ldots 65 \mathrm{~Hz} \end{gathered}$	90   24...230V AC   20...253V AC   $\leq 20 \mathrm{~V}$   45... 65 Hz
Dimension (mm)	58 (H) $\times 45$ (W) $\times 30.5$ (D), from base to top of control terminal 45 (D)			

1 Pole Panel Mount Relay, 3-32V DC Control, 600V AC Output ،99is $C \in$

Specifications	50 Amp	90 Amp
	Catalog Number	Catalog Number
	GQ-50-60-D-1-4	GQ-90-60-D-1-4
Input		
Voltage Range	3-32V DC	3-32V DC
Turn-on Voltage (min.)	$\geq 2.7 \mathrm{~V}$ DC	$\geq 2.7 \mathrm{~V}$ DC
Turn-off Voltage (max.)	$\leq 1 V$ DC	$\leq 1 \mathrm{VDC}$
Consumption	$\leq 13 \mathrm{~mA}$ @ 32V	$\leq 13 \mathrm{~mA}$ @ 32V
Reverse Voltage	< 36V DC	$<36 \mathrm{~V}$ DC
Output		
Amp Rating AC51	50	90
Nominal Voltage	48...600V AC	48...600V AC
Maximum Voltage	40...660V AC	40...660V AC
Zero Switching Voltage	$\leq 40 \mathrm{~V}$	$\leq 40 \mathrm{~V}$
Frequency Range	$45 . . .65 \mathrm{~Hz}$	$45 . . .65 \mathrm{~Hz}$
Dimension (mm)	$58(\mathrm{H}) \times 45(\mathrm{~W}) \times 30.5$ (D), from base to top of control terminal 45   (D)	

1 Pole Panel Mount Relay, 20-260V AC Control, 600V AC Output c94

Specifications	50 Amp	90 Amp
	Catalog Number	Catalog Number
	GQ-50-60-A-1-4	GQ-90-60-A-1-4
Input		
Voltage Range   Turn-on Voltage (min.)   Turn-off Voltage (max.)   Consumption	$\begin{gathered} 20 \ldots 260 \mathrm{~V} \mathrm{AC} \\ \geq 15 \mathrm{~V} \mathrm{AC} \\ \leq 6 \mathrm{VAC} \\ \leq 8 \mathrm{~mA} @ 260 \mathrm{~V} \mathrm{AC} \end{gathered}$	$\begin{gathered} 20 \ldots 260 \mathrm{VAC} \\ \geq 15 \mathrm{~V} \mathrm{AC} \\ \leq 6 \mathrm{VAC} \\ \leq 8 \mathrm{~mA} @ 260 \mathrm{~V} \mathrm{AC} \end{gathered}$
Output		
Amp Rating AC51	50	90
Nominal Voltage	48...600V AC	48...600V AC
Maximum Voltage	40...660V AC	40...660V AC
Zero Switching Voltage	$\leq 40 \mathrm{~V}$	$\leq 40 \mathrm{~V}$
Frequency Range	$45 . .65 \mathrm{~Hz}$	45... 65 Hz
Dimension (mm)	$58(\mathrm{H}) \times 45$ (W) $\times 30.5$ (D), from base to top of control terminal 45   (D)	

1 Pole DIN-Rail Mount Relay, 6-32V DC Control, 600V AC Output ©(ILus C $\in$

Specifications	15 Amp	25 Amp	40 Amp	50 Amp
	Catalog Number	Catalog Number	Catalog Number	Catalog Number
	GTS-15/60-D-0	GTS-25/60-D-0	GTS-40/60-D-0	GTS-50/60-D-0
Input   Voltage Range Turn-on Voltage (min.) Turn-off Voltage (max.) Consumption Reverse Voltage	$\begin{gathered} 6-32 \mathrm{VDC} \\ >5.1 \mathrm{~V} \mathrm{DC} \\ <3 \mathrm{VDC} \\ \leq 10 \mathrm{~mA} @ 32 \mathrm{~V} \\ <36 \mathrm{~V} \mathrm{DC} \end{gathered}$	$\begin{gathered} 6-32 \mathrm{VDC} \\ >5.1 \mathrm{~V} \mathrm{DC} \\ <3 \mathrm{VDC} \\ \leq 10 \mathrm{~mA} @ 32 \mathrm{~V} \\ <36 \mathrm{~V} \mathrm{DC} \end{gathered}$	$\begin{gathered} 6-32 \mathrm{VDC} \\ >5.1 \mathrm{~V} \mathrm{DC} \\ <3 \mathrm{VDC} \\ \leq 10 \mathrm{~mA} @ 32 \mathrm{~V} \\ <36 \mathrm{~V} \mathrm{DC} \end{gathered}$	$\begin{gathered} 6-32 \mathrm{~V} D C \\ >5.1 \mathrm{~V} \mathrm{DC} \\ <3 \mathrm{VDC} \\ \leq 10 \mathrm{~mA} @ 32 \mathrm{~V} \\ <36 \mathrm{~V} D C \end{gathered}$
Output   Amp Rating AC51   Nominal Voltage   Maximum Voltage   Zero Switching Voltage   Frequency Range	$\begin{gathered} 15 \\ 24 \ldots 600 \mathrm{VAC} \\ 20 \ldots 660 \mathrm{~V} \text { AC } \\ <20 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 24 \ldots 600 \mathrm{VAC} \\ 20 \ldots 66 \mathrm{~V} \text { AC } \\ <20 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 40 \\ 24 \ldots 600 \mathrm{VAC} \\ 20 \ldots 66 \mathrm{~V} \mathrm{AC} \\ <20 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ 24 \ldots 600 \mathrm{VAC} \\ 20 \ldots 660 \mathrm{~V} \text { AC } \\ <20 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz} \\ \hline \end{gathered}$
Dimension (mm)	100 (H) $\times 24$ (W) x 107 (D)	108 (H) x 35 (W) x 142 (D)	108 (H) $\times 60$ (W) $\times 142$ (D)	108 (H) $\times 60$ (W) $\times 142$ (D)

1 Pole DIN-Rail Mount Relay, 20-260V AC Control, 600V AC Output © 4 lus C

Specifications	15 Amp	25 Amp	40 Amp	50 Amp
	Catalog Number	Catalog Number	Catalog Number	Catalog Number
	GTS-15/60-A-0	GTS-25/60-A-0	GTS-40/60-A-0	GTS-50/60-A-0
Input   Voltage Range   Turn-on Voltage (min.)   Turn-off Voltage (max.)   Consumption	$\begin{gathered} 20 \ldots 260 \mathrm{VAC} / \mathrm{DC} \\ \geq 15 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \\ \leq 6 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \\ \leq 8 \mathrm{~mA} @ 260 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \end{gathered}$	$\begin{gathered} 20 \ldots 260 \mathrm{VAC} / \mathrm{DC} \\ \geq 15 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \\ \leq 6 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \\ \leq 8 \mathrm{~mA} @ 260 \mathrm{VAC} / \mathrm{DC} \end{gathered}$	$\begin{gathered} 20 \ldots 260 \mathrm{VAC} / \mathrm{DC} \\ \geq 15 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \\ \leq 6 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \\ \leq 8 \mathrm{~mA} @ 260 \mathrm{~V} / \mathrm{AC} / \mathrm{DC} \end{gathered}$	$\begin{gathered} 20 \ldots 260 \mathrm{VAC} / \mathrm{DC} \\ \geq 15 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \\ \leq 6 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \\ \leq 8 \mathrm{~mA} @ 260 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \end{gathered}$
Output Amp Rating AC51 Nominal Voltage Maximum Voltage Zero Switching Voltage Frequency Range	$\begin{gathered} 15 \\ 24 \ldots 600 \mathrm{~V} \text { AC } \\ 20 \ldots 66 \mathrm{~V} \text { AC } \\ <20 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 24 \ldots 600 \mathrm{VAC} \\ 20 \ldots 660 \mathrm{VAC} \\ <20 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ 24 \ldots 600 \mathrm{~V} \text { AC } \\ 20 \ldots 60 \mathrm{~V} \text { AC } \\ <20 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 50 \\ 24 \ldots 600 \mathrm{~V} \text { AC } \\ 20 \ldots 660 \mathrm{~V} \\ <20 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz} \\ \hline \end{gathered}$
Dimension (mm)	100 (H) x 24 (W) x 107 (D)	108 (H) $\times 35$ (W) $\times 142$ (D)	108 (H) x 60 (W) $\times 142$ (D)	108 (H) x 60 (W) x 142 (D)

1 Pole DIN-Rail Mount Relay, 6-32V DC Control, 600V AC Output ©(4)us C


1 Pole DIN-Rail Mount Relay, 20-260V AC Control, 600V AC Output ©(4)us ( $\epsilon$


3 Pole DIN-Rail Mount Relay, 5-32V DC Contrad DCONTINUED


## 3 Pole DIN-Rail Mount Relay, 20...260V AC Control, 600V AC Output cTus $\subset$

Specifications	25 Amp	40 Amp	55 Amp
	Catalog Number	Catalog Number	Catalog Number
Without integrated fan (not required)	GTZ25/60-A-0		
with integrated fan 230V AC		GTZ40/60-A-0-VEN-90	GTZ55/60-A-0-VEN-90
with integrated fan 115V AC		GTZ40/60-A-0-VEN-91	GTZ55/60-A-0-VEN-91
Input Voltage Range    Turn-on Voltage (min.)    Turn-off Voltage (max.)    Consumption	$\begin{gathered} 20 \ldots 260 \mathrm{~V} \mathrm{AC} / D C \\ \geq 15 \mathrm{VAC} / D C \\ \leq 6 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \\ \leq 8 \mathrm{~mA} @ 260 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \\ \hline \end{gathered}$	$\begin{gathered} 20 \ldots 260 \mathrm{~V} \mathrm{AC} / D C \\ \geq 15 \mathrm{~V} \mathrm{AC} / D C \\ \leq 6 \mathrm{~V} \mathrm{AC} / D C \\ \leq 8 \mathrm{~mA} @ 260 \mathrm{~V} \mathrm{AC} / D C \\ \hline \end{gathered}$	$\begin{gathered} 20 \ldots 260 \mathrm{~V} \mathrm{AC} / D C \\ \geq 15 \mathrm{VAC} / \mathrm{DC} \\ \leq 6 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \\ \leq 8 \mathrm{~mA} @ 260 \mathrm{~V} \mathrm{AC} / D \mathrm{DC} \end{gathered}$
Output Amp Rating @ 40    Nominal Voltage    Maximum Voltage    Zero Switching Voltage    Frequency Range	25 $24 \ldots 600 \mathrm{VAC}$ $24 \ldots 60 \mathrm{~V}$ AC $<20 \mathrm{~V}$ $50 / 60 \mathrm{~Hz}$	40 24...600V AC 24..660V AC $<20 \mathrm{~V}$ $50 / 60 \mathrm{~Hz}$	55 $24 \ldots 600 \mathrm{~V}$ AC $24 \ldots 60 \mathrm{~V}$ AC $<20 \mathrm{~V}$ $50 / 60 \mathrm{~Hz}$
Dimension (mm)	100 (H) $\times 24$ (W) $\times 107$ (D)	108 (H) x 35 (W) x 142 (D)	108 (H) x 60 (W) x 142 (D)

## Accessories

Heatsinks	Description	Catalog Number
	Heatsink -   Extruded aluminum DIN-rail mount for mounting one GQ relay. Includes PAN-1 kit attachment for panel mounting.   - For use with GQ 15A \& 25A relays   - $100 \times 24 \times 65 \mathrm{~mm}$   - Thermal Resistance Rth > 2.8 K/W	DIS-25GD
	- For use with GQ 25A \& 50A relays   $-100 \times 60 \times 100 \mathrm{~mm}$   - Thermal Resistance Rth > 8.3 K/W	DIS-50G
	Heatsink -   Extruded aluminum DIN-rail mount for mounting one GQ relay. Includes PAN-1 kit attachment for panel mounting.   - For use with GQ 50A relays   - $100 \times 80 \times 100 \mathrm{~mm}$   - Thermal Resistance Rth > 0.66 K/W	DIS-60G
	Heatsink -   Extruded aluminum DIN-rail mount for mounting one GQ relay. Includes PAN-1 kit attachment for panel mounting.   - For use with GQ 90A relays   - $100 \times 126 \times 100 \mathrm{~mm}$   - Thermal Resistance Rth > $0.56 \mathrm{~K} / \mathrm{W}$	DIS-90G
	Kit Attachment -   Allows for panel mounting the GTS Series and DIS heat sinks. Includes 2 plastic supports, 2 screws, and 2 washers.	PAN-1
$340$	Silicone thermoconductive paste for coupling the GQ Relay power module to the heat sink. 100 g tube.	SIL-1
	Graphite Film $35 \times 55 \mathrm{~mm}$ graphite film for GQ relays.   - 0.12 mm thick, 2.1 W (m*K).   $-200 \times 240 \mathrm{~mm}$ sheet with 25 adhesives	SIL-GQ


Accessory	Description	Catalog Number
	(IN-rail - 2 meter lengths (6'6")   Top Hat, low profile (price per rail)   Top Hat, high profile (package of 20, price per   rail)	3 F   3 AF

Cross Reference Series SAR/SAS to Gefran Solid State Relays

Sprecher+Schuh Catalog Number	Gefran Catalog Number	Gefran Product Status
SAR Series DIN-Rail Mount		
SAR6-25-1D	GTS-25/60-D-0	
SAR6-25-1	GTS-25/60-A-0	
SAR6-40-1D	GTS-40/60-D-0	
SAR6-40-1	GTS-40/60-A-0	
SAR6-50-1D	GTS-50/60-D-0	
SAR6-50-1	GTS-50/60-A-0	
SAR6-75-1D	GTS-75/60-D-0	
SAR6-75-1	GTS-75/60-A-0	
SAR6-100-1D	GTS-90/60-D-0	Select GTS-120/60-D... For above 90A+
SAR6-100-1	GTS-90/60-A-0	Select GTS-120/60-A... For above 90A+
$\sim$	GTS-120/60-D-0-VEN*	New 120A offering
$\sim$	GTS-120/60-A-0-VEN*	New 120A offering
SAR6-30-3D	GTZ25/60-D-0	Select GTZ40/60-D-0-VEN* for above 25A+
SAR6-30-3	GTZ25/60-A-0	Select GTZ40/60-A-0-VEN* for above 25A+
$\sim$	GTZ40/60-D-0-VEN*	New 40A offering
$\sim$	GTZ40/60-A-0-VEN*	New 40A offering
$\sim$	GTZ55/60-D-0-VEN*	New 55A offering
$\sim$	GTZ55/60-A-0-VEN*	New 55A offering
SAS Series Panel Mount		
SAS3-10-1D	GQ-15-24-D-1-4	
SAS3-10-1	GQ-15-24-A-1-4	
SAS3-25-1D	GQ-25-24-D-1-4	
SAS3-25-1	GQ-25-24-A-1-4	
SAS3-50-1D	GQ-50-24-D-1-4	
SAS3-50-1	GQ-50-24-A-1-4	
SAS3-75-1D	GQ-90-24-D-1-4	
SAS3-75-1	GQ-90-24-A-1-4	
SAS6-50-1D	GQ-50-60-D-1-4	
SAS6-50-1	GQ-50-60-A-1-4	
SAS6-75-1D	GQ-90-60-D-1-4	
SAS6-75-1	GQ-90-60-A-1-4	

* Suffix code for selected fan voltage


## Heatsinks



Different models of heatsinks have been designed and tested to meet size and dimension needs.

## How to choose a heatsink

- Set max. air temperature inside the panelboard $\left(\operatorname{Tmax}_{\mathrm{a}}\right)$
- Set max. operating current: $\operatorname{Imax}=$ Inom. load $+10 \%$
- Draw on the "graphs" Tmax $_{2}$, Imax points.
- Choose the smallest heatsink (starting from upwards), which point [ $\left.\operatorname{Tmax}_{\mathrm{a}} \operatorname{Imax}\right]$ is in the gray working area of dissipation curves
- Respect installation distances


## Installation

In order to obtain best reliability, it is important to install a heatsink correctly inside the panel, to reach an adequate thermal exchange between the device and the surrounding air in natural convection conditions.

## How to install it correctly:

Mount it vertically ( max. $10^{\circ}$ inclination from the vertical axis)

- Vertical distance between a heatsink and the panel wall: 100 mm at leas.
- Horizontal distance between a heatsink and the panel wall: 20 mm at least.
- Vertical distance between two heatsinks: 300 mm at least.
- Horizontal distance between two heatsinks: 40 mm at least.
 Check that cable channels do not reduce these distances; should it happen, mount the relays overhanging
from the panel, so that the air can flow vertically on the heatsink without obstables (see Fig.1).

Fig. 1


General Application Notes (continued)

## Dissipation Curves

Effective current controllable based on room temperature


$h=100 \mathrm{~mm}$
$R_{\text {↔ }}=0.56^{\circ} \mathrm{C} / \mathrm{W}$
(*) $\left.^{*}\right)$


## Varistors (MOV)

If your application is located near inductive loads, or shares power sources with large inductive loads that are creating transients in excess of the blocking voltage of the Gefran solid state relay, then you must install a metal oxide varistor (MOV) to protect the solid state relay. It is up to the installation company to properly size the MOV to the application! Ideally, the MOV protection is near the noise generating inductive load (such as a motor, drive, or other large inductive coil) or you can place $\mathrm{MOV}_{s}$ directly across the output terminals of the SSR.

Recommended MOVs from EPCOS:

Part Number	Working Voltage (V)
S20K300	$120-290$ V AC
S20K420	$291-400$ V AC
S20K510	$401-500$ V AC

The Gefran solid state relays include technology that dramatically reduces your need to install an external MOV except in extremely noisy environments or inductive load applications.

## Fuses and Fuse Hold-

## ers

These fuses ensure the maximum safety in solid state relay applications. Fuses with a very high cutoff power are used for this kind of applications. See Table 1.

Table 1.

Recommended Fuses (by others) for GQ, GTS \& GTZ Relays					
Type relay	${ }^{1}{ }^{2} \mathrm{t}$	Nominal voltage	Size	Dimensions (mm)	Bussman Part No.
GQ 15A	450	$\begin{aligned} & 230 \\ & 480 \end{aligned}$	16A	10x38	FWC16A10F
GTS 25A GQ 25A	$\begin{aligned} & 645 \\ & 450 \end{aligned}$	$\begin{aligned} & 230 \\ & 480 \\ & 600 \end{aligned}$	25A	10x38	FWC25A10F
GTS 40A	1010	$\begin{aligned} & 230 \\ & 480 \end{aligned}$	40A	$14 \times 51$	FWP40A14
$\begin{aligned} & \text { GTS 50A } \\ & \text { GQ 50A } \end{aligned}$	6600	$\begin{aligned} & 230 \\ & 480 \\ & 600 \end{aligned}$	63A	22x58	FWP63A22F
GTS 60A	6600	$\begin{aligned} & 230 \\ & 480 \\ & 600 \end{aligned}$	80A	22x58	FWP80A22F
GTS 75A	8000	$\begin{aligned} & 230 \\ & 480 \end{aligned}$	80A	22x58	FWP80A22F
$\begin{aligned} & \text { GTS 90A } \\ & \text { GQ 90A } \end{aligned}$	11200	$\begin{aligned} & 230 \\ & 480 \\ & 600 \end{aligned}$	100A	22x58	FWP100A22F
GTS 120A	11200	$\begin{aligned} & 230 \\ & 480 \\ & 600 \end{aligned}$	125A	$\begin{aligned} & 0-0-0-\mathrm{TN} / 80 \\ & 100 \times 51 \times 30 \end{aligned}$	$\begin{gathered} \text { 170M1418000- } \\ \text { TN/80 } \end{gathered}$
GTZ 25A	$\begin{aligned} & 450 \\ & 645 \end{aligned}$	$\begin{aligned} & 400 \\ & 480 \end{aligned}$	25A	$12 \times 32$	FWC25A10F
GTZ 40A	1010	$\begin{aligned} & 480 \\ & 600 \end{aligned}$	40A	$14 \times 51$	FWP40A14
GTZ 55A	6600	$\begin{aligned} & 480 \\ & 600 \end{aligned}$	63A	$22 \times 58$	FWP63A22F

(*) PF for fuseholders: LEGRAND, PFI for fuseholders: ITALWEBER

## Series GQ Installation notes

- The heat sink must be grounded.
- Power controllers are designed to assure a switching function that does not include protection of the load line or of devices connected to it. The customer must provide all necessary safety and protection devices in conformity to current electrical standards and regulations.
- Protect the solid state relay by using an appropriate heat sink (accessory). The heat sink must be sized according to room temperature and load current.


## Dissipated Power Calculation

Single-phase relay
Pd GQ. $.15 / 25=1.45 *$ IRMS [W]
Pd GQ..50/90 = 1.35 * IRMS [W]
IRMS $=$ single-phase load current

## Heatsink Thermal Resistance Calculation

Rth $=\left(90^{\circ} \mathrm{C}-\max \mathrm{amb}\right.$. T$) / \mathrm{Pd}$

- where $\mathrm{Pd}=$ dissipated power
- Max. amb. T = max air temperature inside the electrical cabinet.
Use a heatsink with thermal resistance inferior to the calculated one (Rth).

Maximum surrounding air temperature $40^{\circ} \mathrm{C}$ suitable for use in pollution degree 2 or better.

## Procedure for mounting on heat sink:

The module-heat sink contact surface must have a maximum planarity error of 0.05 mm . and maximum roughness of 0.02 mm . The fastening holes on the heat sink must be threaded and countersunk.

Attention: spread 1 gram of thermoconductive silicone (we recommend DOW CORNING 340 HeatSink) on the dissipative metal surface of the module. The surfaces must be clean and there must be no impurities in the thermoconductive paste. As alternative it is also possible to use the graphite film SIL-GQ available as accessory.

- Alternately tighten the two fastening screws until reaching a torque of $0.4 \ldots . .0 .6 \mathrm{Nm}$. Wait 5 minutes for any excess paste to drain.
- Alternately tighten the two fastening screws until reaching a torque of 1.2...1.4 Nm.


## Installation on heatsink:



## Series GTS Installation notes

Power controllers are designed to assure a switching function that does not include protection of the load line or of devices connected to it. The customer must provide all necessary safety and protection devices in conformity to current electrical standards and regulations.

To assure maximum reliability, it is essential to install the unit correctly in the panel in order to guarantee adequate heat exchange between the heat sink and the room under natural convection conditions.

Maximum surrounding air temperature $40^{\circ} \mathrm{C}$ "Open Type Equipment" suitable for use in pollution degree 2 or better.

Install the unit vertically (max $10^{\circ}$ inclination from vertical axis).

- Vertical distance between unit and panel wall >100 mm
- Horizontal distance between unit and panel wall at least 20 mm
- Vertical distance between one unit and the next at least 300 mm
- Horizontal distance between one unit and the next at least 20 mm

Make sure that the wire raceways do not reduce such distances. If they do, install the units cantilevered to the panel so that air can flow vertically onto the heat sink without obstruction.

## Series GTZ Installation notes

Power controllers are designed to assure a switching function that does not include protection of the load line or of devices connected to it. The customer must provide all necessary safety and protection devices in conformity to current electrical standards and regulations.

To assure maximum reliability, it is essential to install the unit correctly in the panel in order to guarantee adequate heat exchange between the heat sink and the room under natural convection conditions.

Install the unit vertically (max $10^{\circ}$ inclination from vertical axis).

- Vertical distance between a heatsink and panel wall >100 mm
- Horizontal distance between a heatsink and panel wall at least 20 mm
- Vertical distance between two heatsink at least 300 mm
- Horizontal distance between two heatsink at least 20 mm

Make sure that the cable raceways do not reduce such distances. If they do, install the GTZ overhanging from the panel, so that the air can flow vertically on the heatsink without obstruction.

## Equipment should be short circuit protected by semiconductor fuse type:

Model	Fuse manufacturer	Fuse Model size
GTS 15/230	Bussmann Div Cooper (UK) Ltd	FWC16A10F $10 \times 38$
GTS 25/60		FWC25A10F 10x38
GTS 40/230, GTS 40/60		FWP40A14F 14x51
GTS 50/230, GTS 50/60		FWP63A22F $22 \times 58$
GTS 60/230, GTS 60/60, GTS 75/230, GTS 75/60		FWP80A22F 22x58
GTS 90/230, GTS 90/60		FWP100A22F 22x58
GTS 120/230, GTS 120/60	Bussmann Intn'\| Inc. USA	$\begin{aligned} & \text { 170M1418 000- } \\ & \text { TN/80 } \end{aligned}$

## Warnings



During continuous operation, the heat sink can reach very high temperatures, and keeps a high temperature even after the unit is turned off due to its high thermic inertia.

DO NOT work on the power section without first cutting out electrical power to the panel.
 Follow the instructions in the technical manual.

## Technical Information



## Input

DC Control	Voltage Range	3-32V DC	
	Turn-on Voltage (min.)	$\geq 2.7 \mathrm{~V}$ DC	
	Turn-off Voltage (max.)	$\leq 1 \mathrm{VDC}$	
	Consumption	$\leq 13 \mathrm{~mA}$ @ 32V	
	Reverse Voltage	< 36V DC	
AC Control	Voltage Range	20...260V AC/V DC	
	Turn-on Voltage (min.)	$\geq 15 \mathrm{~V}$ AC/V DC	
	Turn-off Voltage (max.)	$\leq 6 \mathrm{~V}$ AC/V DC	
	Consumption	$\leq 8 \mathrm{~mA} \mathrm{ac/cc} @ 260 \mathrm{~V}$ AC/V DC	
Output			
	Nominal Voltage	24...230V AC	48...600V AC
	Maximum Voltage	20...253V AC	40...660V AC
	Non-repetitive Voltage	600Vp	1200Vp
	Zero Switching Voltage	$\leq 20 \mathrm{~V}$	$\leq 40 \mathrm{~V}$
	Frequency Range	45... 65 Hz	45... 65 Hz

## Insulation

Nominal voltage	input/output	[ Vac ]	$\geq 4000$
	output/case	[ Vac ]	$\geq 2500$
Resistance	input/output	[ $\Omega$ ]	$\geq 10^{10}$
	output/case	[ $\Omega$ ]	$\geq 10^{10}$
Capacity	input/output	[pF]	$\leq 8$
	output/case	[pF]	$\leq 100$

## Ambient Conditions

Ambient temperature	$-25 \ldots+80^{\circ} \mathrm{C}\left[-13 \ldots 176^{\circ} \mathrm{F}\right]$						
Storage temperature	$-55 \ldots+100^{\circ} \mathrm{C}\left[-67 \ldots 212^{\circ} \mathrm{F}\right]$						
Maximum relative humidity	$50 \%$ at $40^{\circ} \mathrm{C}$						
Maximum installation altitude	2000 m above sea level						
Pollution level	3						
hermal Features							
Junction temperature				$\leq 12$			
Rth junction/ambient	[K/W]	$\leq 12$					
junction/case	[K/W]	$\leq 1.25$	$\leq 1.25$	$\leq 0.65$	$\leq 0.30$	$\leq 0.65$	$\leq 0.30$

Heatsink

> Rth $=\left(90^{\circ} \mathrm{C}-\right.$ max amb. T $\left./ \mathrm{Pd}\right)$
> Where $\mathrm{Pd}=$ dissipated power

Max. amb. $\mathrm{T}=$ max. air temperature inside the electrical cabinet Use a heatsink with thermal resistance less than the calculated Rth value


Recommended Fuses (by others)

HIGH SPEED FUSES			
Model	Size   I'T	Bussman Part No.	Dissipated power @ In
GQ15...	$\begin{gathered} 16 A \\ 150 A^{2} S \end{gathered}$	$\begin{gathered} \text { FWC16A10F } \\ 338470 \end{gathered}$	3,5W
GQ25...	$\begin{gathered} 25 \mathrm{~A} \\ 390 \mathrm{~A}^{2} \mathrm{~S} \end{gathered}$	$\begin{gathered} \text { FWC25A10F } \\ 338474 \end{gathered}$	6W
	$375 A^{2}$ S	$\begin{gathered} \text { FWC25A14F } \\ 338130 \end{gathered}$	7W
GQ50...	$\begin{gathered} 50 \mathrm{~A} \\ 1800 \mathrm{~A}^{2} \mathrm{~S} \end{gathered}$	$\begin{gathered} \text { FWC50A14F } \\ 338079 \end{gathered}$	9W
	$\begin{gathered} 50 \mathrm{~A} \\ 1600 \mathrm{~A}^{2} \mathrm{~S} \end{gathered}$	$\begin{gathered} \text { FWC50A22F } \\ 338127 \end{gathered}$	9,5W
GQ90...	$\begin{gathered} 80 \mathrm{~A} \\ 6600 \mathrm{~A}^{2} \mathrm{~S} \end{gathered}$	$\begin{gathered} \text { FWP80A22F } \\ 338199 \end{gathered}$	14W
	$\begin{gathered} 100 \mathrm{~A} \\ 12500 \mathrm{~A}^{2} \mathrm{~S} \end{gathered}$	$\begin{gathered} \text { FWP100A22F } \\ 338478 \end{gathered}$	16W

## Heatsink / Thermal Resistance

Model	Gefran Heatsink   (see accessories)	Thermal Resistance
GQ15...	DIS 25GD	
GQ25...	DIS 50G	$R_{\text {th }} \geq 2,8 \mathrm{~K} / \mathrm{W}$   $\mathrm{R}_{\text {th }} \geq 0,83 \mathrm{~K} / \mathrm{W}$
GQ50...	DIS 50G	$\mathrm{R}_{\text {th }} \geq 0,83 \mathrm{~K} / \mathrm{W}$
GQ90...	DIS 90G	$\mathrm{R}_{\text {th }} \geq 0,56 \mathrm{~K} / \mathrm{W}$

Data relating to $40^{\circ} \mathrm{C}$ ambient temperature, heatsink in vertical position with 15 cm of free air above and below.

Section Cable	
Model	Section
GQ15...	$2.5 \mathrm{~mm}^{2} / 14$ AWG
GQ25...	$6 \mathrm{~mm}^{2} / 10$ AWG
GQ50...	$12 \mathrm{~mm}^{2} / 7$ AWG
GQ90...	$25 \mathrm{~mm}^{2} / 4$ AWG

Minimum allowed rated section based on the rated currents of the power solid state relays, for copper leads isolated in PVC in continuous use and at room temperature of $40^{\circ} \mathrm{C}$, according to standards CEI 44-5, CEI 17-11, IEC 408 pursuant to standard EN60204-1.
Power terminals in compliance with standard EN60947-1

## EMC Emission

EN 61000-6-4	Emissions conducted at radiofrequency	Class A (Industrial devices)
EN 61000-6-4	Emissions irradiated at radiofrequency	Class A (Industrial devices)

The product is designed for type A environments. Use of the product in type B environments may cause undesired electromagnetic noise. In this case, the user should take appropriate steps for improvement.

## EMC Immunity

EN 61000-6-2	Immunity for industrial environments	
EN 61000-4-2	Electrostatic discharges 4kV by contact; 8 kV in air.	Performance criterion 2
EN 61000-4-6	Electromagnetic field at radiofrequency Test level 3.	Performance criterion 1
	$0.15-80 \mathrm{MHz}$	
EN 61000-4-3	Electromagnetic field at radiofrequency Test level 10V/m.	Performance criterion 1
	$80-1000 \mathrm{MHz}$	
EN 61000-4-4	Immunity to burst	Test level $2 \mathrm{kV} / 100 \mathrm{KHz}$.
		Performance criterion 2
EN 61000-4-5	Immunity to surge	Test level: 2kV (Phase-ground);
		1kV (Phase-phase).
		Performance criterion 2

## Safety

EN 61010-1 Safety requirements
Technical Information

Amp Rating		GTS-15	GTS-25	GTS-40	GTS-50	GTS-60	GTS-75	GTS-90	GTS-120
Rated Current @ 40 ${ }^{\circ} \mathrm{C}$ (continuous service)	[ Arms ]	15	25	40	50	60	75	90	120
Non-repetitive overcurrent ( $\mathrm{t}=20 \mathrm{~ms}$ )	[A]	400	400	600	1150	1150	1300	1500	1500
124 for blowout	[ $\left.A^{2} \mathrm{~S}\right]$	$\leq 450$	$\leq 645$	$\leq 1010$	$\leq 6600$	$\leq 6600$	$\leq 8000$	$\leq 11,200$	$\leq 11,200$
dV/dt critical with output deactiviated	[ $\mathrm{V} / \mathrm{\mu s}$ ]	1000	1000	1000	1000	1000	1000	1000	1000
Input									
DC Control		6-32V DC							
	Turn-on Voltage (min.)	> 5.1V DC							
	Turn-off Voltage (max.)	$<3 \mathrm{VDC}$							
	Consumption	$\leq 10 \mathrm{~mA}$ @ 32V							
	Reverse Voltage	< 36V DC							
AC Control	Voltage Range	20...260V AC/DC							
	Turn-on Voltage (min.)	$\geq 15 \mathrm{~V}$ AC/DC							
		$\leq 6 \mathrm{~V}$ AC/DC							
	Consumption	<8mA @ 260V AC/DC							
Output									
Nominal Voltage		24...600V AC							
Maximum Voltage		20...660V AC							
Non-repetitive Voltage		500 Vp for 230 V models, 1200Vp for 480V models							
Zero Switching Voltage		<20V							
Frequency Range		$50 / 60 \mathrm{~Hz}$							
Isolation									
Rated voltage input/output	[V ac]	$\geq 4000$							
Ambient Conditions									
Ambient temperature		$0^{\circ} \ldots+80^{\circ} \mathrm{C}\left[32^{\circ} \ldots+176{ }^{\circ} \mathrm{F}\right]$ according to dissipation curves							
Storage temperature		$-20 \ldots+85^{\circ} \mathrm{C}\left[-4^{0} \ldots+185^{\circ} \mathrm{F}\right]$							
Maximum relative humidity		$50 \%$ at $40^{\circ} \mathrm{C}$							
Maximum installation altitude		2000 m above sea level							
Pollution level		3							

## Dissipation Curves

GTS 15-25


GTS 40-50-60


GTS 75-90-120

N.B.: Curves for the GTS 120 refer to the device complete with standard running.

## Technical Information

Terminal and Conductors

Size	Terminal	Contact area (WxD) screw type	Type of preisolated terminal $(2$	Max section. 1 conductor tightening torque
15/20A	C	$6.4 \times 9 \mathrm{M} 3$	1, 2, 4	6 mm / 10AWG 0.6Nm max
	P	$6.4 \times 9 \mathrm{M} 3$	1, 2, 4	$6 \mathrm{~mm}^{2} / 10 \mathrm{AWG}$ 0.4-0.6Nm
	G	$9 \times 12 \mathrm{M} 5$	1	6mm² / 10AWG 1.3-1.8Nm
25A	C	$6.4 \times 9 \mathrm{M} 3$	1, 2, 4	$6 \mathrm{~mm}{ }^{2} / 10 \mathrm{AWG}$ 0.6Nm max
	P	$6.4 \times 9 \mathrm{M} 3$	1,2	$6 \mathrm{~mm}^{2} / 10 \mathrm{AWG}$ 0.4-0.6Nm
	G	$9 \times 12 \mathrm{M} 5$	1	$6 \mathrm{~mm}^{2} / 10 A W G ~ 1.3-1.8 \mathrm{Nm}$
40A	C	$6.3 \times 9 \mathrm{M} 3$	1, 2, 3	2.5mm² 14AWG 0.6Nm max
	P	$12 \times 12$ M5	1,2	16mm² / 6AWG 1.5-2.2Nm
	G	$11.5 \times 12 \mathrm{M} 5$	1	16mm² 6AWG 1.5-2.2Nm
50/60A	C	$6.3 \times 9 \mathrm{M} 3$	1, 2, 3	2.5mm² 14AWG 0.6Nm max
	P	$16 \times 18$ M6	1,2	$50 \mathrm{~mm}^{2} /$ OAWG $3.5-6 \mathrm{Nm}$
	G	$14 \times 16$ M5	1	$50 \mathrm{~mm}^{2} /$ OAWG 1.8-2.5Nmm
75-90A	C	$6.3 \times 9 \mathrm{M} 3$	1, 2, 3	2.5mm² / 14AWG 0.6Nm max
	P	16x18 M6	1,2	50mm² / OAWG 3.5-6Nm
	G	$14 \times 16$ M5	1	$50 \mathrm{~mm}^{2} /$ OAWG 1.8-2.5Nmm
120A	C	$6.3 \times 9 \mathrm{M} 3$	1, 2, 3	2.5mm² / 14AWG 0.6Nm max
	P	$16 \times 18$ M6	1,2	50mm² OAWG 3.5-6Nm
	G	14x16 M5	1	$50 \mathrm{~mm}^{2} /$ OAWG 1.8-2.5Nm

Terminal: $\mathrm{C}=$ Control, $\mathrm{P}=$ Power, $\mathrm{G}=$ Ground
Terminal Types

(1) The max. sections specified refer to unipolar copper wires isolated in PVC..
(2 The screw terminals must be suitable for field wiring connection only when the wire is provided with eyelet tube terminal type 1.

## Technical Information

Amp Rating		GTZ-25/60	GTZ-40/60	GTZ-55/60	GTZ-40/60	GTZ-55/60
Category AC51, AC53a	[A rms]	25	40	55	40	55
Nominal current (lmax)	[A rms]	$3 \times 25$	$3 \times 40$	3×55	$3 \times 40$	$3 \times 55$
Non-repetitive overcurrent ( $\mathrm{t}=20 \mathrm{~ms}$ )	[A]	400	600	1150	600	1150
124 for blowout	[ $A^{2}$ s]	645	1010	6600	1010	6600
DC Control Input Voltage Command Circuit   (UC)		5...32V DC				
Turn-on Voltage (min.)		$>4.5 \mathrm{~V}$ DC				
Turn-off Voltage (max.)		$<3 \mathrm{~V}$ DC				
Consumption		$\leq 18 \mathrm{~mA}$ @ 5V DC-22mA @ 32V DC				
Reverse Voltage		< 36V DC				
AC Control INPUT Voltage Range		20...260V AC/DC				
Turn-on Voltage (min.)		$\geq 15 \mathrm{~V}$ AC/DC				
Turn-off Voltage (max.)		$\leq 6 \mathrm{~V}$ AC/DC				
Consumption		$\leq 8 \mathrm{~mA}$ @ 260V AC/DC				
Frequency Range		$50 / 60 \mathrm{~Hz}$				
Activation Time		$\leq 1 / 2$ cycle				
Deactivation Time		$\leq 1 / 2$ cycle				
Critcal dV/dt OFF-state	[ $\mathrm{V} / \mu \mathrm{s}$ ]	1000				
Potential drop at rated current	[Vrms]	$\leq 1.4$				
Peak Voltage		$>1200 \mathrm{~V}$ DC				
Protection		IP20				
Isolation						
Nominal voltage ( $\mathrm{U}_{\mathrm{i}}$ )	[V ac]	600				
Insulation						
Nominal voltage input/outputNominal inpulse withstand (Uimp)	[KV ac]	4				
	[V AC]	2500				

## Ambient Conditions

Working temperature	$-20 \ldots+80^{\circ} \mathrm{C}\left[-4^{\circ} \ldots 176^{\circ} \mathrm{F}\right]$
Storage temperature	$-20 \ldots+85^{\circ} \mathrm{C}\left[-4^{\circ} \ldots 185^{\circ} \mathrm{F}\right]$
Maximum relative humidity	$50 \%$ at $40^{\circ} \mathrm{C}$
Maximum installation altitude	1000 m asl
Pollution level	3 (suitable for use in degree 2 environment)
Class	A (industrial device)

## Dissipation Curve

GTZ 25-40-55


## Technical Information

## Terminals and Conductors

Size	Nominal (2)   Section Cable mm ${ }^{2}$	Control Terminal(A1, A2, B1, B2			Power Terminal (L1, L2, L3, T1, T2, T3)			Ground Terminal ${ }^{1}$	
		Contact area (WxD) screw type	Type of preisolated terminal	Section conductor tightening torque (1)	Contact area   (WxD)   screw type	Type of preisolated terminal	Max. section conductor tightening torque	Contact area   (WxD)   screw type	Max. section conductor tightening torque
$25 A$ $40 A$	6 10	$\begin{gathered} 6.3 \times 9 \\ \text { M3 } \end{gathered}$	$\begin{aligned} & \text { Eye / } \\ & \text { fork / } \\ & \text { tip } \end{aligned}$	$\min .0 .35 \mathrm{~mm}^{2}$ $\max .2 .5 \mathrm{~mm}^{2}$ 0.6 Nm Max	$\begin{gathered} 12 \times 12 \\ \text { M5 } \end{gathered}$	Eye /   fork /   tip	Tip Terminal min. $1 \mathrm{~mm}^{2}$ (17AWG) max. 10mm² (7AWG)   Eye or Fork Terminal min. $1 \mathrm{~mm}^{2}$ (17AWG) max. $16 \mathrm{~mm}^{2}$ (5AWG) $1.5 \ldots 2.2 \mathrm{Nm}$	$12 \times 12$ selftapping screw 3.9x12 DIN7981	min. $1 \mathrm{~mm}^{2}$   (17AWG) max. $16 \mathrm{~mm}^{2}$ (5AWG) 1.5 ... 1.8 Nm
55A	16							$\begin{gathered} 12 \times 12 \\ \text { M5 } \end{gathered}$	$\mathrm{min} .1 \mathrm{~mm}^{2}$   (17AWG)   max. $16 \mathrm{~mm}^{2}$   (5AWG)   2.5 Nm

(1) Note: The maximum sections specified refer to unipolar copper wires isolated in PVC. For the ground terminal, a eye wire terminal is required. $(W \times D)=$ Width $\times$ depth
(2 The minimum acceptable nominal section based on the nominal currents of the power solid state units is given for copper conductors isolated in PVC, under continuous operating conditions and at $40^{\circ} \mathrm{C}$ ambient temperature according to standards CEI 44-5, CEI 17-11, IEC 408 in accordance with EN60204-1.

## Connection Examples



L1:	Phase 1 input
L2 :	Phase 2 input
L3:	Phase 3 input
T1:	Phase 1 output
T2:	Phase 2 output
T3:	Phase 3 output
A1:	Control signal ( + )
A2:	Control signal ( - )
B1:	Alarm outpectial unit)
B2:	Alarm output ( (-) (Special unit)
Led1:	Red led signal indicator
Led2:	Yellow led (alarm overtemperature junction)

Series GQ Solid State Relays


## Series GQ Fuse Connections

The solid state group must be connected using proper fuses against short circuits

F1：苜 隹文		
GQ－15．．	$\begin{aligned} & \text { FUS-016 } \\ & 10 \times 38 \end{aligned}$	FWC 16A 10F BUSSMANN
GQ－25．．	$\begin{aligned} & \text { FUS-025 } \\ & 10 \times 38 \end{aligned}$	FWC 25A 10F BUSSMANN
GQ－50．．	$\begin{aligned} & \hline \text { FUS-050 } \\ & 22 \times 58 \\ & \hline \end{aligned}$	FWP 50A 22F BUSSMANN
GQ－90．．	$\begin{aligned} & \text { FUS-100 } \\ & 22 \times 58 \end{aligned}$	FWP100A 22F BUSSMANN
F2:$\square$ $\square$ $\square$		
GQ－X－X－A．．	$\begin{array}{\|l\|} \hline \text { 3A max } \\ 250 \mathrm{~V} \text { min. } \end{array}$	UL Category JDYX－JDYX2



## Series GTS Solid State Relays

Single-phase connection


Three-phase Star connection with neutral


Three-phase Triangle or Star connection without neutral on two phases


Series GTZ Solid State Relays
Three-phase Triangle or Star connection (with and without neutral)


[^5]GQ Panel Mount Relays
Dimensions are in millimeters (inches). Dimensions not intended for manufacturing purposes.

(*) See installation notes

GTS 1-Pole DIN-Rail Mount Relays


GTZ 3-Pole DIN-Rail Mount Relays


GTZ40 \& GTZ55

## For Technical Information and Dimensions please see the online catalog

## Notes

## For Technical Information and Dimensions please see the online catalog

Notes

## For Technical Information and Dimensions please see the online catalog

## Notes

## For Technical Information and Dimensions please see the online catalog

## For Technical Information and Dimensions please see the online catalog

## Notes

## For Technical Information and Dimensions please see the online catalog

## For Technical Information and Dimensions please see the online catalog

## Notes

## For Technical Information and Dimensions please see the online catalog

## For Technical Information and Dimensions please see the online catalog

## Notes

## For Technical Information and Dimensions please see the online catalog


[^0]:    (0) Other voltages available. Contact your Sprecher + Schuh representative.
    (2) CV7 must be wired for momentary impulse operation only.
    (3) Command duration 0.03 ... 15 seconds.
    (4) Use 600 V AC when 575 V is required.
    © Coil operating limits on CV7-11 match those of the relay it is being used with.

[^1]:    ( The standard features of "Push-to-test/Latching" lever can be easily removed and plugged with an accessory plug or push-to-test button. See installation guide and accessory plugs/push-to-test buttons on page G49.

[^2]:    (0) Relays can be special ordered with No LED's, contact your Sprecher + Schuh representative.
    (2 This product is sourced from a third party manufacturer, not Relpol.

[^3]:    (1) This product is sourced from a third party manufacturer, not Relpol.

[^4]:    (1) Standard contact materials and coil rated voltages are marked with bold type.

[^5]:    * Only in the version with option overtemperature alarm output

